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Short Summary 

This study develops a highly accurate deep learning-based gene expression prediction 

model (DeepCBA) based on maize chromatin interaction data. DeepCBA exhibits higher 

accuracy in expression classification and expression value prediction, and identifies some 

important motifs involving maize gene promoter proximal interaction (PPI) and proximal-distal 

interaction (PDI). Moreover, the promoter editing and verification of two reported genes 

(ZmCLE7, ZmVTE4) demonstrated new insights of DeepCBA in precise designing of gene 

expression and even future intelligent breeding. 

Abstract 

Chromatin interactions create spatial proximity between distal regulatory elements and 

target genes in the genome, which has an important impact on gene expression, transcriptional 

regulation, and phenotypic traits. To date, several methods have been developed for predicting 

gene expression. However, existing methods do not take into consideration the impact of 

chromatin interactions on target gene expression, thus potentially reduces the accuracy of gene 

expression prediction and mining of important regulatory elements. In this study, a highly 

accurate deep learning-based gene expression prediction model (DeepCBA) based on maize 
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chromatin interaction data was developed. Compared with existing models, DeepCBA exhibits 

higher accuracy in expression classification and expression value prediction. The average 

Pearson correlation coefficients (PCC) for predicting gene expression using gene promoter 

proximal interactions, proximal-distal interactions, and proximal and distal interactions were 

0.818, 0.625, and 0.929, respectively, representing an increase of 0.357, 0.16, and 0.469 over 

the PCC of traditional methods that only use gene proximal sequences. Some important motifs 

were identified through DeepCBA and were found to be enriched in open chromatin regions 

and expression quantitative trait loci (eQTL) and have the molecular characteristic of tissue 

specificity. Importantly, the experimental results of maize flowering-related gene ZmRap2.7 

and tillering-related gene ZmTb1 demonstrate the feasibility of DeepCBA in exploring 

regulatory elements that affect gene expression. Moreover, the promoter editing and 

verification of two reported genes (ZmCLE7, ZmVTE4) demonstrated new insights of 

DeepCBA in precise designing of gene expression and even future intelligent breeding. 

DeepCBA is available at http://www.deepcba.com/ or http://124.220.197.196/. 

 

Keywords: Maize, Gene expression prediction, Chromatin interactions, Deep learning, 

Promoter editing, Regulatory elements and motifs.  

Introduction 

Gene expression plays an important regulatory role in the development, growth and 

reproduction of organisms, and a specific amount of gene product is produced in a particular 

spatiotemporal manner (Zrimec et al., 2020). Predicting gene expression helps to better 

understand the mechanism and the impact of sequence variation on transcriptional regulation, 

and is complementary to population-based association analysis methods (Avsec, Ž et al., 2021). 

Therefore, developing accurate gene expression prediction models and mining important 

variation sites would help reveal the genetic basis of complex traits. 

Gene expression is regulated by key genomic regulatory elements in DNA sequences, 

including promoters, enhancers, silencers, insulators. etc. Similarly, epigenetic features such as 

histone modifications, DNA methylation, transcription factors (Liu et al., 2021), and DNase I 

hypersensitive sites play significant roles in the expression of target genes. Early studies mainly 

used traditional machine learning methods to predict gene expression based on various types of 

data (Beer M. A., 2004; Cheng et al., 2011; Dong et al., 2012; Tasaki et al., 2020), with room of 

improvement on the accuracy. Deep learning methods have good fitting capability in processing 
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complex nonlinear data and can effectively extract complex features. To date, deep learning 

methods have been widely used in many fields, such as in image processing and natural 

language processing. In recent years, researchers have also used deep learning for genome 

sequence analysis tasks, including the prediction of sequence functions (Zhou et al., 2015), 

transcription factor-binding sites (Zhao et al., 2021), chromatin interactions, methylation status, 

etc (Karlić et al., 2010; Schmidt et al., 2017). Similarly, researchers have developed deep learning 

models to predict gene expression through analyzing genome sequences, such as Basenji 

(Kelley et al., 2018), ExPecto (Zhou et al., 2018), Enformer (Avsec, Ž. et al., 2021), and 

Chromoformer (Lee et al., 2022), etc. Specifically, ExPecto uses convolutional neural network 

(CNN) to integrate 40 kb sequences upstream and downstream of gene promoters and uses 

spatial feature transformation and a linear regression model to predict human gene expression. 

Enformer uses the Transformer model to analyze the impact of distal elements as distant as 100 

kb on gene expression. Studies show that chromatin interactions create spatial proximity 

between distal regulatory elements and target genes on the genome, which has an important 

impact on gene expression, transcriptional regulation and phenotypic traits (Schoenfelder et al., 

2019; Peng et al., 2019). However, existing deep learning methods do not consider the impact 

of chromatin interactions (including promoter proximal regions and distal elements) on target 

gene expression, resulting in the capture of incomplete sequence information and thus affecting 

prediction accuracy. Although Enformer can predict the impact of distal elements within 100 

kb on target gene expression, this method cannot capture the impact of regulatory elements at 

the genome-wide level. In addition, the above methods have mainly been used in humans and 

mice, and there have been few studies in plants. 

Maize is a crop with one of the largest cultivation areas in the world. It is not only the most 

important food crop, but has also come to be used in industry and agriculture. Based on the B73 

reference genome sequence, chromatin interaction and gene expression data from multiple 

tissues, our study has three major contributions: 

(1) We developed an accurate maize gene expression prediction model named DeepCBA 

(Deep neural networks of CNN module, BiLSTM and Attention mechanism) based on 

chromatin interactions data. DeepCBA has higher AUC and PCC values in gene expression 

classification and regression prediction tasks, and it improves the PCC of predicting gene 

expression values by 46.3% compared to the traditional method. Experimental results show the 

impact of gene promoter proximal interactions, proximal-distal interactions, and proximal and 

distal interactions on gene expression are 0.801, 0.621, and 0.923, respectively.  
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 (2) The DeepCBA model identified 400-800 motifs that affect gene expression through 

chromatin interactions in maize shoot and ear tissues. These motifs have obvious tissue 

specificity and are significantly enriched in expression quantitative trait loci (eQTL) and open 

chromatin regions. The identified motifs are clustered into 6 groups of core sequences in ear 

and shoot, and the distribution pattern of the motifs can be divided into 5 and 4 categories in 

PPI and PDI mode, respectively. 

(3) Experimental results of detecting the regulatory elements of the reported genes 

(ZmRap2.7, ZmTb1), saturating the promoter regions of ZmCLE7 and ZmVTE4, constructing 

cross-tissue and cross-genotype transfer learning models reveal the feasibility of DeepCBA in 

mining distal regulatory elements, precise designing of gene expression and even future 

intelligent breeding.  

 

Results 

Predicting gene expression based on DeepCBA model. The experimental data used in 

this study are the published maize chromatin interaction and expression data (Li et al., 2019) of 

three tissues (Shoot and Ear). According to the type of elements that interact with genes 

(Materials and methods), the chromatin interaction data is divided into two categories: the 

promoter proximal region interaction (PPI) and the promoter-distal region interaction (PDI). 

The interaction data involves two tissues: Shoot (Li et al., 2019) and Ear (Li et al., 2019). The 

average interaction number of PPI in Shoot and Ear is 50198, and the average interaction 

number of PDI in above two tissues (Shoot and Ear) is 11198. The number of genes involved 

in the above interaction datasets is 23707. To balance the number of genes in each category, we 

classify genes into Unexpressed/Expressed/Highly-expressed according to FPKM∈[0-0.1), 

FPKM∈[0.1-15), FPKM∈[15-max]. The gene expression values of different tissues were 

between 0 and 500, accounting for 99.6% of all genes in maize genome. We defined the DNA 

sequence for a specific gene as an inclusion of 1 kb upstream and 0.5 kb  downstream of the 

transcription start site (TSS), and 0.5 kb upstream and 1 kb downstream of the transcription 

termination site (TTS) (Figure 1A) (Washburn, J. D. et al., 2019).  

In this study, a high-precision maize gene expression prediction model, called DeepCBA, 

was developed to make predictions based on chromatin interactions (Figure 1B). DeepCBA 

includes three modules, and the convolution neural network (CNN) is used to extract features 

of the encoded chromatin sequence and reduce the dimensionality. DNA sequences are usually 

double-stranded, with the two strands connected by hydrogen bonds between bases, known as 
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reverse complements. The bidirectional long short-term memory network (BiLSTM) can 

capture bidirectional and spatial information, and it has ability to capture the dependencies 

between features by accessing long-range context. In this study, we use the BiLSTM to capture 

distal interactions among chromatin sequence features. The self-attention mechanism is used to 

capture the contribution of key features for the model. 

To evaluate the reliability of DeepCBA, the accuracy of the gene expression classification 

prediction of the following models was compared: (1) CNN_No_PPI: a CNN model using the 

3 kb sequences upstream and downstream of the gene; (2) CNN_PPI: a CNN model using the 

6 kb sequence of promoter proximal region interaction (PPI); (3) DeepCBA_PPI: the DeepCBA 

model using the 6 kb sequence of promoter proximal region interaction (PPI). DeepCBA has 

excellent model generalization ability in predicting gene expression classification. The results 

show that the gene expression classification prediction accuracy of DeepCBA using PPI data, 

or in PPI mode, is significantly better than that of CNN_No_PPI and CNN_PPI (Figure S1). 

The PCC of predicted gene expression for DeepCBA_PPI in two datasets is 0.954, 0.967, and 

the PCC of predicted gene expression for CNN_No_PPI in two datasets is 0.309, 0.52 (Figure 

1C). To explore the impact of the order of interacting genes on the results of target gene 

expression, we consider gene order in PPI mode (data augmentation) and the number of 

chromatin interactions is twice that of the original PPI sequences (no data augmentation). The 

experimental results show that DeepCBA can achieve better prediction results after the 

regulatory order between genes in PPI mode is taken into consideration (Figure 1C). The above 

results show that DeepCBA has higher accuracy than traditional methods in predicting gene 

expression. 

DeepCBA identifies a dynamic range of gene expression values in different 

interaction modes. When only using PDI sequences to predict gene expression, the PCC of 

DeepCBA's prediction results of the two tissues are 0.6214 and 0.6278, respectively. While, 

only using PPI sequences to predict gene expression, the PCC of DeepCBA's prediction results 

of the two tissues are 0.8060 and 0.8290, respectively. When considering the interaction 

sequences of PPI and PDI at the same time, the PCC of DeepCBA in Shoot and Ear are 0.9314 

and 0.9266, respectively. After considering the order of genes in PPI mode (data augmentation), 

the PCC of the two tissues are 0.9539 and 0.9672 (Figure 2). The above results show that the 

PCC of DeepCBA increases by 35.7%, 20%, 50.2% in the case of PDI, PPI, PDI+PPI, 

respectively. In addition, we conducted expression classification and regression predictions for 

the other three datasets: Shoot (Peng et al., 2019), Ear (Peng et al., 2019) and Tassel (Sun et al., 
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2020) (Materials and methods). Compared to other methods, the regression prediction accuracy 

of DeepCBA has increased by 23.16%, 20.54%, 19.73% in the three datasets (Figure S2). For 

the gene expression classification prediction, DeepCBA has better average AUC than the other 

two methods (Figure S3). The above results reveal the significant role of chromatin interactive 

regulatory sequences info in predicting gene expression and quantifying the effects of different 

interactive elements on expression regulation. As the dataset size of chromatin interactions 

increases, the better predictions of gene expression are. 

Interestingly, there are some outliers in the above DeepCBA gene expression prediction 

results. These outliers all show a tendency of higher true expression but lower predicted values. 

Taking the expression prediction of PPI sequences as an example, we compare the predicted 

gene expression (Pre_exp) and the real gene expression value (Real_exp). When Pre_exp < 

0.5*Real_exp or Pre_exp > 1.5*Real_exp, we regard the gene as a candidate gene with a large 

prediction deviation. Then, the candidate genes are sorted according to the deviation, and it is 

found that approximately 40% of these genes participate in both PPI and PDI interactions (Table 

S5). Moreover, the genes with biased predictions have obvious tissue specificity (Figure S4A). 

The above results indicate that an insufficient amount of chromatin interactions dataset maybe 

the factor causing the deviation in gene expression prediction, which reveals the complex 

regulatory network in the process of gene expression. 

Genome wide mining of PPI-mediated motifs affecting gene expression.  To identify 

important motifs affecting gene expression, saliency map (Chu et al., 2011) was used to calculate 

the gradient of chromatin sequence. The results show that the sequence region around 750 bp 

upstream of gene TSS and 250 bp downstream of gene TSS have significant contribution to 

gene expression prediction (Figure 3A), which is consistent with previous results (Washburn et 

al., 2019). Furthermore, TF-MoDIsco (Avanti et al., 2018) was used to mine motifs (Figure S4B, 

C), and 812 and 897 motifs were identified in Ear and Shoot, respectively (Figure 3B). To 

validate the reliability of these predicted motifs, we use PlantTFDB database (Tian et al., 2020; 

Jin et al., 2017; Jin et al., 2015; Jin et al., 2014) as the ground truth and query these motifs against 

the database. The results show that there are 87.6% and 41.14% motifs in Shoot and Ear are 

matched with the verified conserved domains of 653 higher plants (E-value < 0.5) (Figure S8). 

Secondly, the motifs identified in Ear and Shoot were compared with the motifs that are bound 

by 104 maize transcription factors (Tu et al., 2020), and results showed that 40.4% and 39.4% 

of 104 TFs can be matched (Supplementary Data 1 and Supplementary Data 2), respectively. 

Interestingly, four motifs (ATTTAA, CAGGAA, TAATAT and CACAGA) were validated to be 
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involved in gene expression regulation (Liu et al., 2021; Fu et al., 2013; Hufford, M. B et al., 

2021) (Figure S12A, B). The above results show that the motif sequences identified using 

DeepCBA have biological significance. The detected motifs are positionally anchored in the 6 

kb (3 kb per gene) sequence of the PPI sequence, and the distribution pattern of the motifs can 

be divided into 5 categories: (1) highly enriched near 250 bp downstream of the TSS; (2) only 

significantly enriched at specific sites, such as the TSS and TTS; (3) slightly enriched near 250 

bp downstream of the TSS; (4) slightly enriched in the TSS and highly enriched in the TTS; 

and (5) distributed evenly throughout the entire sequence (Figure 3C). By comparing the 

number of motifs with different patterns in different tissues, it is found that the proportion of 

motifs in the first category is the highest, which is consistent with the gradient results in 

sequences (Washburn et al., 2019). The number of overlapping motifs in the Ear and Shoot 

dataset is 95. The distribution of these 95 motifs in the five enrichment patterns is basically 

consistent in Ear and Shoot (Table S6). To further verify that the motifs identified by DeepCBA 

affect gene expression, we combine the motifs in pairs to form a motif composition (Real motif), 

and the control is the motif composition formed by random sequence combination (Random 

motif). Then, the two kinds of motif compositions are inserted into 3 kb sequences to perform 

gene expression prediction (using N coding mode in the one-hot coding). The results show that 

the impact on the expression of the composited motifs identified by DeepCBA is significantly 

higher than that of the control group (Figure S7B) (p value = 2.06e-13). To further detect the 

impact of the specific motif sequence changes on expression, we randomly selected two motifs 

(CCGCCG and CTCTCTC), mutated the above two motifs in the test dataset and predicted the 

expression of the corresponding genes (Figure S7A). The numbers of genes in Ear and Shoot 

are 2608 and 4176, respectively. According to the standard that the expression value changes 

by more than 50%, the results in the Ear dataset show that the proportions of two motif 

mutations that affect gene expression are as high as 96.24% and 96.43%, respectively. In the 

Shoot dataset, the proportions of the two motif mutations that affect gene expression are as high 

as 92.12% and 92.21%, respectively (Figure S7C-F). The above results show that the 

discovered motifs play important functions in gene expression and regulation. 

To further validate whether the motifs identified by DeepCBA have sequence similarities 

in different categories, MetaLogo (Chen et al., 2022) is used to cluster the motifs into core 

sequences. Six groups of motifs with similar core sequences are identified in Ear and Shoot 

(Figure 3D, E and Figure S9). Based on the clustering results, we compare the expression of 

genes containing different numbers of motifs in the gene sequences. Gene expression shows an 
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upward trend as the number of motif compositions increases (Figure 3F, G), which imply that 

the expression of genes is the result of the joint regulation of different factors. 

The motifs identified by DeepCBA reveal the regulation of gene expression. To 

analyze the apparent characteristics and biological functions of the motifs identified by 

DeepCBA in PPI mode, the identified motifs in Ear are positionally anchored in the original 

gene sequences. First, we determine the physical location of each motif in the chromosome 

(Supplementary Data 5) and matched motifs with published eQTLs (Tian et al., 2023). The 

following two processing modes are used as controls: (1) removing motif sequences from PPI 

sequences and selecting sequences of equal length from the remaining PPI sequences; (2) 

removing PPI sequences from the whole DNA genome and selecting sequences from the 

remaining genome sequences. Compared with the control, the motifs identified by DeepCBA 

are significantly enriched at eQTLs (Figure 4A, B) (****P < 0.0001, t test). We conducted 100 

repeated experiments in the above two controls to reduce the error introduced by randomized 

experiments. Moreover, we match these motifs with the open chromatin regions identified in 

26 lines of the NAM population (Woodhouse et al., 2021). The results show that the motifs 

identified by DeepCBA are significantly enriched in the open chromatin regions identified in 

the NAM population (Figure 4C, D) (****P < 0.0001, t test). Similarly, the physical locations 

of important motifs identified in Shoot are significantly enriched with eQTLs and open 

chromatin regions (Figure S10) (****P < 0.00001, t test). Through matching with 104 

transcription factors (Tu et al., 2020) and eQTLs, there is an identified motif of CATGCA in the 

sequence of gene Zm00001d042609. The motif and the downstream gene Zm00001d042600 

can be bound by the transcription factor nactf109 simultaneously (Supplementary Data 9). The 

variation in CATGCA in the maize association mapping panel (AMP) leads to expression 

changes of Zm00001d042600, thus affecting the drought resistance phenotype at the seedling 

stage (Figure 4E). Meanwhile, CATGCA (RY-motif) is a highly conserved motif that exists in 

the promoters of many seed-specific genes and plays an important role in seed development 

(Mönke et al., 2004). The transcription factors of ABI3 and FUS3 play important regulatory 

roles in the development and maturation process of Arabidopsis seeds, and they can combine 

with RY-motif to regulate the ABA-mediated endosperm maturation process (Guerriero et al., 

2009). The homologous gene of ABI in maize, Vp1 is also a key factor in regulating seed 

maturation. In addition, Vp1 is also expressed in the phloem cells of vegetative tissues under 

drought stress (Cao et al., 2007). ZmABI19, a TF containing the B3 domain, can also bind to 

the RY-motif upstream of the grain filling-specific TF gene Opaque2 (O2) promoter to perform 
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transactivation to regulate endosperm development in maize. In addition, the deletion of RY-

motif will greatly reduce promoter activity in the regulatory regions of legumin gene of V. faba 

and napin in Brassica napus (Reidt et al., 2000). The above cases verify that the motifs 

identified by DeepCBA have important biological functions in multiple species. 

According to the previously published articles and database reports, 7 important motifs 

are found to be involved in regulating gene expression and plant growth and development, etc. 

For instance, the RY motif (CATGCA) is reported to be involved in the regulation of seed 

endosperm development (Yang et al., 2021). Y-patch (TC motif) is a core regulatory element 

which can enhance promoter activity (Jores et al., 2021) and some experiments have shown 

that EjBZR1 can bind to the BRRE motif in the EjCYP90A promoter to regulate expression and 

fruit cell enlargement (Su et al., 2021). The function description of some important motifs 

detected by DeepCBA in PPI mode is shown in Table S7.  

DeepCBA reveals regulation motifs for gene expression in PDI mode. The gradient 

results of motifs in PDI mode show that the region near 250 bp downstream of the gene TSS is 

more likely to affect gene expression (Figure S5A and Figure S13A). Figure S5B shows the 

motifs identified by DeepCBA based on PPI and PDI sequences. The motifs identified in two 

tissue types have obvious tissue specificity, and the motifs identified by the two modes (PPI 

and PDI) in the same tissue are also different. These results indicate that there are differences 

in factors that regulate gene expression through PPI and PDI (Figure S13B). To verify the 

reliability of motifs identified in PDI mode, we compare these motifs against the PlantTFDB 

(Tian et al., 2020; Jin et al., 2017; Jin et al., 2015; Jin et al., 2014) (E-value < 0.5). The results 

show that 51.52% and 48.64% of the motifs in Shoot and Ear match with those of 653 verified 

higher plants in PDI mode. In addition, 58% and 56% of the 104 transcription factors (Tu et al., 

2020) match the motifs identified in Ear and Shoot (Supplementary Data 3 and Supplementary 

Data 4), respectively. Same to the analysis method in PPI mode, the motifs identified by 

DeepCBA (Supplementary Data 6) are matched with eQTLs and chromatin open regions. The 

following two processing modes are used as controls: (1) removing motif sequences from PDI 

sequences and selecting sequences of equal length from the remaining PDI sequences and (2) 

removing PDI sequences from the whole DNA genome and selecting sequences from the 

remaining genome sequences. Compared with the control, the motifs identified by DeepCBA 

are significantly enriched at eQTLs (Figure S5C, D) (****P < 0.0001, t test). Moreover, we 

match these motifs with the open chromatin regions identified in 26 NAM population lines. 

The results show that the motifs identified by DeepCBA are significantly enriched in the open 

Jo
urn

al 
Pre-

pro
of



chromatin regions identified in the NAM population (Figure S5E, F) (****P < 0.0001, t test). 

Similarly, the physical locations of important motifs identified in Shoot are significantly 

enriched with eQTLs and chromatin open regions (Figure S10 and Figure S11) (****P < 

0.00001, t test). 

The physical locations of the motifs identified in different tissues in PDI sequences are 

clustered, and we divide them into the following four categories: (1) highly enriched near 250 

bp downstream of the TSS; (2) highly enriched at specific sites; (3) poorly enriched near 250 

bp downstream of the TSS; and (4) distributed evenly throughout the whole sequence (Figure 

6a). The forms of sequence importance of the above first and second categories are 

complementary, suggesting that there may be differences in the way they work. Similar to the 

results in PPI mode, the distribution of the 44 overlapping motifs in the four enrichment patterns 

is basically same in Ear and Shoot (Table S6). MetaLogo (Chen et al., 2022) is used to cluster 

the core sequences of motifs, and 6 groups of core sequences are identified in Ear and Shoot 

(Figure S6B). Two motifs, GGCCCA and AAAAAA (Figure S6C, D and Figure S13C), have 

also been reported in previous studies (Peng et al., 2019; Woodhouse et al., 2021). Further 

analysis shows that the conserved region in which the transcription factor TCP binds to DNA 

is also the GGCCCA motif in maize. Therefore, transcription factors (such as TCP) are likely 

to play an important role in regulating gene expression through distal elements.  Meanwhile, 

GGCCCA is also known as the site II motif, has been identified in the promoter region of 

various highly expressed genes, such as ribosomal and DEAD-box RNA helicase genes. The 

transcription factors of TCP and ASR5 are the examples of proteins known to bind the 

GGCCCA motif. Moreover, Xu identified several diurnal-related cis elements in seedlings and 

leaves (Xu et al., 2011), including element II of Arabidopsis PCNA-2 (*GGCCCA* or 

*AGCCCA*). 

Similarly, DeepCBA also detected 12 important motifs that are reported in the PDI mode. 

The functions of these motifs include: enhancing promoter activity, affecting gene expression, 

heat resistance, salt stress tolerance, forming immune complexes, etc. Among them, GGCCCA 

has been found in the promoter regions of various highly expressed genes, and it is a binding 

site for the transcription factors of TCP and ASR5 (Xu et al., 2011; Oka et al., 2017). Besides, 

association of Telo box (AAACCTA) with site II (GGCCCA) or TEF cis-acting elements 

appears to be involved in ribosome biogenesis (Gaspin et al., 2010). GCC box (GCCGCC) has 

been reported that the ERF subfamily can bind to the GCC box in response to biotic stress and 

can also respond to ethylene by enhancing gene expression (Ishige et al., 1999; Wu et al., 2020). 
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The function description of some important motifs detected by DeepCBA in PDI mode is shown 

in Table S8. 

DeepCBA identifies regulatory elements in two genes (ZmRap2.7, ZmTb1) of maize. 

Based on a series of motifs identified in the PDI mode, we further conducted an in-depth 

research on the regulatory site of Vgt1 of the maize flowering-related gene ZmRap2.7 (Zhao et 

al., 2018; Ricci et al., 2019). We extract the 70 kb sequence upstream of gene ZmRap2.7, and 

then split the sequence into sub-sequences with a length of 1.5 kb and input them into DeepCBA 

model. Saliency map (Chu et al., 2011) is used to calculate the sequence gradient, and the results 

show that the important motifs identified by DeepCBA are mainly distributed in open chromatin 

regions (Figure 5A). We further narrowed down the regions to two 500 bp regions (chr8: 

135941716-135942216 and chr8: 135945716-135946216). After matching the identified motif 

with 104 transcription factors, enrichment analysis is performed for the above two regions. 

There are 18 transcription factor-binding sites in the first region and 19 transcription factor-

binding sites in the second region (Figure 5B). Importantly, there are up to 16 common 

transcription factors in the two regions (Table S9 and Table S10 and Supplementary Data 10). 

Similarly, we extract a 3 kb sequence upstream of the TSS of gene ZmRap2.7 and input it into 

DeepCBA model for training and calculate the sequence gradient (Figure 5C). The detected 

motifs are matched with the chromatin open regions, and the motifs of seven identified 

transcription factors are found to overlap with open chromatin regions (Figure 5D). We also 

conduct sequence analysis of maize tillering-related gene ZmTb1 and its regulatory elements. 

The 70 kb sequence upstream of ZmTb1 is selected for verification using DeepCBA, and the 

important motifs identified are also mainly distributed in the open chromatin region (Figure 

S14A-C). For the 10 kb (chr 1: 270482176-270492176) region with the highest gradient value, 

we trained DeepCBA model based on the PDI sequence and detected 314 and 514 motifs in Ear 

and Shoot involving 93 transcription factors. Similarly, we detected 140 and 262 motifs in the 

3 kb (chr1: 270549176-270552176) region with the second highest gradient value in Ear and 

Shoot, involving 93 transcription factors. The numbers of overlapping motifs in the above two 

regions were 59 and 118, involving 84 transcription factors (Figure S14D, E). The above results 

reveal that there are similar transcription factor binding clusters in distal regulatory elements 

and their regulated genes, thus enabling a deep analysis of gene expression regulation. 

DeepCBA accurately predicts gene expression values through promoter saturation 

mutations. Another method for generating weak alleles through targeting coding regions is 

using CRISPR-Cas9, which has been widely used in different plants, to edit cis-regulatory 
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regions (Rodríguez-Leal et al., 2017; Liu et al., 2021; Song et al., 2022). However, screening lines 

with continuous expression gradient changes in target genes among a large amount of genetic 

editing material comes with many uncertainties. Therefore, it is crucial to utilize computational 

tools to predict and screen variations in continuous gradient expression by performing 

saturation mutations on gene promoters. For validation, we selected the editing results in 

promoter region of gene ZmCLE7 in maize (Liu et al., 2021). ZmCLE7 affects yield by changing 

the ear phenotype, and Ear tissue is used in this study to build the deep learning prediction 

model. The upstream region with a length of 4 kb (chr4: 8334400-8338400) of gene ZmCLE7 

is selected as the candidate editing region (Figure 6A). Combined with the published results, 

the CRISPR-Cas9 edited sequences are input into DeepCBA model to predict gene expression 

(Figure 6B). The results show that the predicted gene expression has a trend consistent with the 

expression obtained experimentally and the correlation between the predicted gene expression 

after editing the target segment and the qPCR value is 0.51 (Figure 6C). To explore more 

precisely how the 4 kb target sequence affects the expression of ZmCLE7, we used sliding 

window methods (window size = 200 bp, step = 200 bp) to process the 4 kb sequence and 

obtained 12 sequences with a length of 3 kb (Figure 6D). Then, we used the DeepCBA model 

to predict gene expression for the above 12 edited sequences. The results show that a wider 

range of expression variation types can be produced than are produced in the biological 

experiment results (Figure 6E). 

To further verify the reliability of the DeepCBA model in gene editing applications, the 

promoter (chr5: 205820586-205829816) of the gene ZmVTE4, which affects the vitamin E 

content of maize is edited. Combined with the distribution characteristics of different histone 

modifications in the target region (Figure 6F), we design 7 fragment deletion types for CRISPR-

Cas9 editing (Figure 6G). These sequences are input into the DeepCBA model of Ear tissue for 

expression prediction. Moreover, we extracted RNA from the edited individual plants and 

detected the expression of target genes and the correlation between the predicted gene 

expression after editing the target segment and the qPCR value is 0.57 (Figure 6H). The results 

show the same trend of change of the predicted expression and the real gene expression. Taken 

together, the above results demonstrate the feasibility of DeepCBA for promoter saturation 

mutations and provide a powerful tool for the precise design of desired gene expression.  

DeepCBA realizes cross-tissue and cross-genotype maize gene expression prediction. 

With the development of machine learning technologies, many methods have been applied to 

the study of different tissues, materials and species (Kelley et al., 2018). To further explore the 
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feasibility of predicting expression between different tissues and materials, we constructed a 

transfer learning model to achieve gene expression prediction across tissues (Ear, Shoot) and 

materials (B73, SK (Yang et al., 2019)) (Figure S16). In addition, we used a new shoot dataset 

(Peng et al., 2019) to further verify the generalization ability of DeepCBA. The new Shoot 

dataset (Peng et al., 2019) contains 43,865 PPIs involving 20,695 genes. The Shoot dataset of 

SK (Yang et al., 2019) contains 7,394 PPIs involving 7,099 genes. The PCC of DeepCBA 

increases from 0.7601 to 0.8687 after applying transfer learning on the Shoot dataset (Yang et 

al., 2019) (Figure S17A). In addition, we compared the running time of DeepCBA for gene 

expression prediction with and without transfer learning in different datasets. The results 

indicate that transfer learning can improve the prediction accuracy while reducing the time of 

model training and prediction (Figure S17B). For the cross-tissue gene expression prediction: 

(1) Based on training a prediction model using the PPI and PDI datasets for Shoot (Peng et al., 

2019), we predict gene expression for the Shoot (Li et al., 2019) and Ear (Li et al., 2019) (Figure 

S18A). The PCC for the predicted expression and true expression are 0.8811 and 0.888, 

respectively. (2) Based on training a prediction model using the PPI and PDI datasets in Ear (Li 

et al., 2019), we predict gene expression for the tissues of Shoot (Peng et al., 2019) and Shoot 

(Li et al., 2019) (Figure S18B). The PCC for the predicted expression and true expression are 

0.8848 and 0.8737, respectively. (3) Based on training a prediction model using the PPI and 

PDI datasets in Shoot (Li et al., 2019), we predict gene expression for the tissues of Ear (Li et 

al., 2019) and Shoot (Peng et al., 2019). The PCC for the predicted expression and true 

expression are 0.8931 and 0.8689, respectively (Figure S18C). For the cross-genotype and 

cross-tissue gene expression prediction, we predict the gene expression of the shoot tissue of 

SK inbred line based on the three tissue types (Shoot (Peng et al., 2019), Ear (Li et al., 2019), 

and Shoot (Li et al., 2019)) of B73 material in maize. The PCC for the predicted expression 

and true expression is 0.8687, 0.8583, and 0.8623, respectively. (Figure S18D, E, F). In all, the 

PCC for the gene expression prediction among different tissues and materials basically exceed 

0.85 through transfer learning. This study provides a reference for predicting gene expression 

across different tissues and materials and broadens the application scope of the DeepCBA 

model. 

DeepCBA provides a real-time online website. To facilitate open access use of the 

DeepCBA model, we developed the DeepCBA online website (http://www.deepcba.com/ or 

http://124.220.197.196/). The website provides the function of high-precision gene expression 

prediction based on chromatin interactions in maize (and other three crops of rice, cotton and 
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wheat). Users can select any of the four crops and input any interaction sequences that meet the 

requirements to predict the expression of the related genes and sequences. Additionally, the 

website provides a visualization interface to display the gradient importance of the input 

sequences (Figure 7). 

Discussion 

The coding regions in maize account for only a small part of the entire genome, and most 

of the genome is noncoding regions. Many functional loci have been identified in the noncoding 

regions of maize through association analysis, and several kinds of regulatory elements have 

been identified through epigenetics analyses at the genome-wide level. However, it is still 

unclear how the regulatory elements in noncoding regions accurately regulate gene expression. 

Using deep learning tools to predict the contribution of different regulatory elements to gene 

expression has important biological significance. As we known, chromatin interactions have 

important impact on the target gene expression. An important question is therefore to what 

extent gene expression is determined by the chromatin interactions of DNA sequences. 

This study developed a model, called DeepCBA, for high-precision gene expression 

prediction based on maize chromatin interactions. The CNN is used to extract local features in 

the DNA sequence, BiLSTM is innovatively used to capture the relationships between distal 

features, and the self-attention mechanism is used to capture important features. Compared with 

existing methods, DeepCBA has higher accuracy in gene expression classification and 

expression value prediction. DeepCBA predicts gene expression accurately by integrating 

chromatin interaction (PPI, PDI) data in different maize tissues, and the effect size of different 

regulatory elements on gene expression is quantitatively assessed. It reveals that the average 

contribution of promoter proximal interaction (PPI), proximal-distal interaction (PDI), 

proximal and distal interaction (PPI+PDI) for predicting gene expression is 0.817, 0.625 and 

0.929, which is improved by 0.357, 0.165 and 0.469 compared to the single sequence method.  

Unraveling the black box of deep learning-based applications remains a challenge in 

biological researches. To interpret the reasoning process of DeepCBA, we used saliency map 

to calculate the model gradient through the reverse calculation and obtained significance map 

of DNA sequences. We identified important motifs in the chromatin interaction sequences 

together with other latent features yet unknown for the prediction of gene expression. 

Verification against known databases and the published literature shows that the detected motifs 

have high reliability. In terms of molecular characteristics, the motifs identified in this study 
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were mainly enriched in eQTLs and chromatin open regions. Moreover, gene expression 

showed an upward trend as the number of motifs in the motif composition increased (Figure 

3F, G). The detected motifs and gradient results of different maize tissues (Ear, Shoot) showed 

obvious tissue specificity (Figure S5B). The identified motifs are clustered into six groups of 

core sequences in ear and shoot (Figure S9). In addition, the distribution pattern of the motifs 

can be divided into 5 and 4 categories in PPI and PDI mode, respectively (Figure 3C, Figure 

S6A). 

Alleles that control important traits (such as crop yield, resistance) often alter the 

expression level of genes, thereby affecting phenotype. Editing the promoter region helps to 

intelligently design the expression of target genes, achieving the goal of improving crop yield 

and resistance (Rodríguez-Leal et al., 2017; Liu et al., 2021; Song et al., 2022). For the 

regulatory elements in noncoding regions, DeepCBA can detect the gradient effect of regulatory 

elements at the single base level and evaluate the functional loci of regulatory elements 

accurately. The feasibility of DeepCBA in exploring regulatory elements that affect gene 

expression is validated through the reported maize flowering-related gene ZmRap2.7 and 

tillering-related gene ZmTb1 (Figure 5, Figure S14). Through saturation mutations in the 

promoter and regulatory regions of specific genes (ZmCLE7, ZmVTE4), de novo gene 

expression prediction was achieved (Figure 6). This study validated the reliability of DeepCBA 

through real examples in maize. This model can be widely used for precise design of target 

gene expression levels in different crops, thereby serving intelligent design and breeding. 

To further explore the feasibility of predicting expression in practical applications, a 

transfer learning model of DeepCBA was constructed to achieve gene expression prediction 

across tissues (Ear, Shoot) and materials (Figure S18). The gene expression prediction PCC of 

the cross-tissue and cross-genotype through the transfer learning model exceeds 85%, verifying 

the wide application scope of DeepCBA. To facilitate the use of DeepCBA model, we have 

developed a friendly online website (http://www.deepcba.com/ or http://124.220.197.196/) for 

gene expression prediction and sequence importance visualization about four crops (maize, rice, 

cotton and wheat).  

Interestingly, the expression of some genes predicted using DeepCBA were lower than 

their actual expression value. This is maybe related to the small number of chromatin 

interactions in different tissues and materials. That is to say, there are no sufficient data for 

training DeepCBA and influencing the prediction effect. In addition, the prediction accuracy 

will be improved through integrating multi-omics data, including chromatin open regions, 
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transcription factor binding sites, histone modifications, DNA methylation, etc. 

Artificial intelligence is continuing to penetrate various fields, and machine learning has 

advantages in exploring the impact of different regulatory elements on gene expression. With 

the development of different deep learning algorithms, the understanding of different regulatory 

elements will gradually become clearer in the future. We will have a deeper understanding of 

the effect of variation on gene expression when considering tissue specificity and 

spatiotemporal specificity. This study will also provide a theoretical basis for accurately 

designing gene expression and optimizing intelligent breeding in the future. 

Materials and methods 

Data collection and processing 

Data statistical analysis. The experimental data used in this study are the published 

datasets of maize chromatin interactions and gene expression (Li et al., 2019; Peng et al., 2019.). 

The data involves two tissues of shoot and ear. The chromatin interaction includes two types: 

gene-gene promoter proximal interaction (PPI), gene and proximal-distal interaction (PDI) (Li 

et al., 2019). The Ear (Li et al., 2019) dataset contains 35,332 PPIs involving 20,601 genes. The 

Shoot (Li et al., 2019) dataset contains 65,064 PPIs involving 23,707 genes. In addition, we 

used other three datasets of Shoot (Peng et al., 2019), Ear (Sun et al., 2020), Tassel (Sun et al., 

2020) (Table S3) to evaluate the performance of DeepCBA in the prediction of gene expression 

classification and regression (Figure S2 and Figure S3). 

To balance the number of genes in different categories, we classified genes into 

Unexpressed, Expressed, and Highly-expressed according to the expression range of [0-0.1), 

[0.1-15), and [15-max], respectively (Table S1). To reduce false-positives in the training process, 

we divided the training and test datasets based on gene family information. The number of 

genes with expression in the range of [0-100], [1-100], [0-500], and [0-max] can be seen in 

Table S4. More than 99% genes had expression in the range of [0-500], so we used these genes 

for the experimental analysis of expression prediction. 

PDI data processing. The PDI datasets (Li et al., 2019) of Shoot and Ear include 11,207 

and 11,189 PDIs, respectively. The length of the intergenic distal sequences of different tissues 

is mainly in the range of 1 kb ~ 2 kb, and we set the length of the distal sequences to 1.5 kb. 

The promoter proximal sequence was also set to 1.5 kb, including 1 kb upstream and 0.5 kb 

downstream of the gene TSS. When the length of the distal sequence was less than 1.5 kb, we 

supplemented N sequences at both ends of the sequence to 1.5 kb. When the length of the distal 

Jo
urn

al 
Pre-

pro
of



sequence was greater than 1.5 kb, 750 bp sequences were extracted from the middle of the 

sequence to both sides to form a 1.5 kb sequence. 

Data augmentation. For the chromatin interactions of gene A and gene B in PPI mode, it 

may be that gene A affects the expression of gene B, or it may be that gene B affects the 

expression of gene A. Therefore, we doubled the number of PPI interactions by adjusting the 

order of gene sequences, which is called data enrichment. 

Quantitative real-time polymerase chain reaction(qRT-PCR). The qRT-PCR data of 

ZmCLE7 gene comes from the prior research of (Liu et al., 2021). For qRT-PCR analysis, 0.1 

g of plant tissue was used to extract total RNA using Quick RNA Isolation Kit (Huayueyang 

Biotechnology Co. Ltd, Beijing, China). Sources of the analyzed leaves tissue are from 

ZmVTE4 Editing materials. EasyScript One-Step gDNA Removal and cDNA Synthesis 

SuperMix (TransGen Biotech Co. Ltd, Beijing, China) was used to remove the gDNA from the 

extracted RNA and synthesize first-strand complementary DNA. Real-time fluorescence 

quantitative polymerase chain reaction with SYBR Green Master Mix (Vazyme Biotech Co. 

Ltd, Nanjing, China) on a CFX96 Real-Time System (Hercules, CA, USA) was used to quantify 

the expression level of editing materials. The primers used for quantitative qRT-PCR are listed 

in Supplementary data (Supplementary Data 13 and 14). The concrete information of the target 

locations involved in ZmVTE4 gene editing is shown in Figure S15. 

Methods 

Model architecture. The DeepCBA model uses one-hot encoding, and it includes three 

modules: CNN, BiLSTM, and Self-attention. The CNN module includes three parts, and each 

part contains two convolutional layers. Each convolutional layer connects to a maximum 

pooling layer to achieve feature dimensionality reduction and feature re-extraction. BiLSTM is 

used to capture feature information about the proximal and distal chromatin sequences and then 

mine important motif features that affect gene expression. The self-attention mechanism 

redistributes the weights of the parameters trained in the model to capture important features. 

To reduce overfitting, batch normalization and dropout mechanisms are used. In the last layer 

of DeepCBA, the softmax or linear activation functions are used to perform the prediction task 

(Figure 1B and Table S13). 

The batch size, number of convolutional filters and the size of convolutional kernels are 

the hyperparameters of DeepCBA. Experimental results show that the batch size has large 

impact on the prediction results (Figure S19A). The model's prediction accuracy also improves 

as the number and size of convolutional kernels increase. By comprehensively considering the 
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running time and memory space, the number and size of convolution kernels are set to 64 and 

8, respectively (Figure S19B, C and Table S13). 

We supposed that the promoter proximal region sequence Pseq_G of target gene G, Pseq_G 

consists of two parts: 1 kb sequence upstream and 0.5 kb sequence downstream of gene TSS, 

0.5 kb sequence upstream and 1 kb sequence downstream of gene TTS. The expression level 

of G is Vag, Pseq_A denotes the promoter proximal region sequence of gene_A that has a PPI 

interaction with G, and the following four steps are used to construct the prediction model for 

gene G based on PPI chromatin interactions. 

One-hot encoding. One-hot encoding is used to process Pseq_G and Pseq_A with a length of 

3 kb, that is, A=[1,0,0,0]T, C=[0,1,0,0]T, G=[0,0,1,0]T, T=[0,0,0,1]T, N=[0,0,0,0]T. Then, Pseq_G 

is encoded as matrix M1∈R4×3000
,
  and Pseq_A is encoded as matrix M2∈R4×3000. Then, M1 and M2 

are concatenated vertically and input into the model, P=Concat (M1, M2), P∈R4×6000. 

CNN Layer. In DeepCBA, the convolution operation in the CNN is firstly used to perform 

dimensionality reduction and extract important features. For an encoded matrix M∈R(M*N) and 

a filter
*U VW R , ,U << M  V << N , the convolution operation is shown in Eq. (1). 

U V

ij uv i-u+1, j-v+1

u=1 v=1

G = W M                                        (1) 

For example, the dimension reduction operation on matrices M1 and M2 is shown in Eq. (2) 

and Eq. (3). 

1 1 1 1 1 1 1 1 1[ ] ( )[ ] [ ] [ ]
j k

G m ,n = M *W m ,n = W j,k M m - j,n - k                  (2) 

2 2 2 2 2 2 2 2 2[ ] ( )[ ] [ ] [ ]
j k

G m ,n = M *W m ,n = W j,k M m - j,n - k                (3) 

W represents the filter, and mi and ni represent the number of rows and columns of the 

matrix after dimension reduction. Then, we obtain the reduced dimension matrices 1 1[ ]1G m ,n

and 2 2[ ]2G m ,n . 

The maximum pooling operation is used for secondary dimensionality reduction to solve 

the problem of overfitting. Based on the feature map [ ] M* N* D

i i iG m ,n R  obtained through the 

convolution operation, each feature map 
d M*NG R  ( 1 d D  ) can be divided into multiple 

regions 
d

m,nR   ( ' '1 m M ,1 n N     ). Then, the maximum value within 
d

m,nR   is selected to 

represent the region, as shown in Eq. (4). 

d
m,n

d

m,n i
i R

Y = maxG


                                                   (4) 
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BiLSTM Layer. For the promoter proximal sequence Pseq_G of gene G, and Pseq_A denoting 

the promoter proximal sequence of gene_A that has a PPI interaction with G, 1 2m ,mY and 1 2m ,mY

are obtained through the CNN model. m1=m2=3, n1=n2=128. According to the self-loop update 

idea of the BiLSTM input gate, forget gate and output gate, the update operation at time t (taking 

1 1m ,nY  as an example) is shown in Eq. (5). 

1 1[ ]( ) [ , ] [ ]( )( )( )1 1 1 1m ,n t m n m ,n t-1f f t f

i i i, j j i, j j

j j

f = b + U Y + W h                       (5-1)

1 1[ ]( ) [ ]( ) [ ]( 1) [ ]( ) [ , ]( ) [ ]( 1)
( )1 1 1 1 1 1 1 1 1 1m ,n t m ,n t m ,n t- m ,n t m n t m ,n t-

i i i i i i, j j i, j j

j j

S = f S g b + U Y + W h            (5-2) 

1, 1[ ]( )]( ) [ ]( 1)
( )1 1 1 1

m n tm ,n t m ,n t-g g g

i i i, j j i, j j

j j

g = b + U Y + W h  
[

                     (5-3) 

        
[ ]( ) [ ]( ) [ ]( 1)

( )1 1 1 1 1 1m ,n t m ,n t m ,n t-o o o

i i i, j j i, j j

j j

O = b + U Y + W h                         (5-4) 

[ ]( ) [ ]( ) [ ]( )
( )1 1 1 1 1 1m ,n t m ,n t m ,n t

i i ih = tanh S O                                      (5-5) 

th  denotes the current hidden layer vector. i, j  denote the i and j-th neurons, respectively. 

th  includes the output of all LSTM cells. f f fb U W, ,  represent the bias value, input weight and 

cycle weight of the corresponding threshold units, respectively. [ ]( )1 1m ,n t

iO  represents the output of 

the i-th neuron at the current time t. BiLSTM fully integrates the temporal and pre/post feature 

information of 
1 1m ,nY  and 

2 2m ,nY , reduces its dimensionality to 3*64, and obtains [ ]1 1m ,n

iO  and [ 2, 2]

i

m nO . 

m1=m2=3, n1=n2=64. 

Self-Attention Layer. 
1 1m ,nO   and 

2 2m ,nO   denote the feature matrices of Pseq_G and Pseq_A, 

respectively. It composites 
1 1m ,nO  and 

2 2m ,nO  vertically and integrates the attention mechanism to 

realize the redistribution of weights and predict target gene expression. Through compositing 

1 1m ,nO  and 
2 2m ,nO vertically, 

1 2s ,sO  is obtained. s1=m1+m2=6, s2=n1+n2=64. To improve the accuracy 

of feature extraction, an attention mechanism is used after the BiLSTM module to realize the 

redistribution of weights, as shown in Eq. (6) (taking 
1 2s ,sO  as an example). 

    , ,1 2 1 2

1 2

T
s ,s s ,si w

i w s s w i s i iT
ii w

i

exp(b b )
f = tanh(W O +b ) a = V = a f

exp(b b )



，              (6) 

bi represents the implicit representation of feature s1 2,sO   in the BiLSTM layer. The 

importance of feature 
1 2s ,sO  is measured by the similarity between bi and the sequence vector bw. 

Then, tanh is used to normalize the weight of each feature. Each feature is multiplied by its 

corresponding weight through the attention mechanism and a summation is conducted to obtain 

the output vector Vs. By setting dropout to prevent overfitting, it uses a linear function to obtain 
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the expression Vag of the target gene G. 

Transfer learning. Transfer learning is widely used to reduce the training time of the 

model and achieve better results with a small amount of data. We use transfer learning to fine-

tune and train DeepCBA model, thus to predict gene expression across tissues and genotypes 

(Figure S16 and Figure S17). Specifically, we freeze the first 0 to 19 layers of the pre-trained 

model and conduct fine-tuning through small batch training (learning rate=1e-4, batch size=64, 

epochs=200). 

DeepCBA mines important DNA sequence regions and motifs. To mine important 

motifs that affect gene expression in the PPI and PDI modes, saliency map (Chu et al., 2011) is 

used to calculate the significance map (true positive, TP; true negative, TN), and it generates 

the model gradient through the reverse calculation. The gradient value is denoted as 4*6000*N, 

where N represents the sum of the number of TPs and TNs. Finally, it uses TF-MoDIsco (Avanti 

Shrikumar et al., 2018) to mine important motifs (Figure S4B, C). The important identified 

motifs that affect gene expression are compared with the TOMTOM (Gupta et al., 2007) 

platform and the 653 conserved structural regions of higher plants in the PlantTFDB (Table 

S11and Table S12) to evaluate the reliability of the motifs. 

  Different motif compositions affect gene expression. (1) Background sequences are 

generated by filling a sequence with a length of 3 kb based on the N coding mode. (2) The 

important motifs identified by DeepCBA are combined to form a motif composition (Real motif) 

and A/C/G/T are randomly combined to form a motif composition with equal length (Random 

motif). (3) The real motif and random motif are embedded into the background sequence and 

the gene expression is predicted through the DeepCBA model (Figure S7B). 

Motif enrichment in the open chromatin region. To mine the characteristics of important 

motifs identified by DeepCBA in Shoot and Ear, the true physical location of each motif in the 

chromosome are identified. Then, the physical locations of the identified motifs are matched to 

the chromatin open regions in the NAM population. The operation is repeated 100 times to 

establish the following two controls: (1) Motif sequences removed from the PPI and PDI 

sequences and sequences with equal length selected from the remaining PPI and PDI sequences. 

(2)  PPI and PDI sequences removed from the whole genome and sequences with equal length 

selected from the remaining genome sequences. 
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Figure Legends 

Figure 1 The workflow of DeepCBA. A Two kinds of chromatin interactions: PPI and PDI. 1.5 kb gene 

proximal sequence of TSS and TTS. B Five steps in DeepCBA: sequence encoding, feature extraction 

using CNN, temporal and distal feature extraction using BiLSTM, attention mechanism and gene 

expression prediction. C The PCC comparison results of the three methods for predicting gene expression 

values. CNN_No_PPI: The CNN model only uses gene upstream and downstream sequences. 

DeepCBA_No_PPI: The DeepCBA model only uses gene upstream and downstream sequences. 

DeepCBA_PPI: The DeepCBA model uses interaction sequences. Data augmentation denotes 

considering gene order in PPI mode during model training.  

 

Figure 2 Performance of DeepCBA for maize gene expression value prediction in different modes. 

From left to right are the results of predicting gene expression in the case of PDI, PPI, PDI+PPI, 

respectively. A-D The distribution of predicted values and true values of gene expression when DeepCBA 

model is used to predict gene expression of Shoot in the case of PDI, PPI, PDI+PPI, respectively. E-H 

The distribution of predicted values and true values of gene expression when DeepCBA model is used to 

predict gene expression of Ear in the case of PDI, PPI, PDI+PPI, respectively.  

 

Figure 3 The motifs influencing gene expression are identified based on the PPI sequence. A The 

impact on expression prediction of two interacting sequences input into the DeepCBA model. B The 

Venn diagram shows the motifs identified by DeepCBA in Shoot and Ear in PPI mode. C Five different 
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distribution patterns of motifs identified in Shoot and Ear: (1) Highly enriched near 250 bp downstream 

of the TSS. (2) Highly enriched at specific positions. (3) Poorly enrichment near 250 bp downstream of 

the TSS. (4) Poorly enrichment near TSSs but high enrichment near TTSs. (5) Even distribution across 

the whole sequence. D, E The core motif sequence obtained using MetaLogo based on the motifs 

identified in Ear and Shoot in PPI mode. There are 6 core sequences obtained in the two tissues. F, G 

Expression changes in Expressed and Highly expressed genes containing different numbers of motifs in 

Ear and Shoot. 

 

Figure 4 The epigenetic features and examples of regulated gene expression of motifs identified by 

DeepCBA (Ear). A The matching number of motifs with different lengths and eQTLs in PPI mode. The 

motif sequence was removed from the PPI sequences, and sequences with lengths of 6 ~ 10 were 

randomly selected from the remaining sequences as controls (****P < 0.0001, ***P < 0.01, **P < 0.05, 

t test). B The matching number of motifs with different lengths and eQTLs in PPI mode. PPI interaction 

sequences were removed from the whole genome, and sequences with lengths of 6 to 10 were randomly 

selected from the remaining sequences as controls (****P < 0.0001, ***P < 0.01, **P < 0.05, t test). C, 

D The matching number of motifs identified by DeepCBA in PPI mode and the chromatin open region 

in the NAM population. The mode of control selection is the same as that of eQTL matching. E For the 

identified CATGCA motif in the Zm00001d042609 sequence in PPI mode, the motif and the downstream 

gene Zm00001d042600 can be bound by the transcription factor nactf109 simultaneously. The reported 

results verified that the variation in the CATGCA of the maize association mapping panel (AMP) will 

lead to expression changes in the gene Zm00001d042600, thus affecting the maize drought resistance 

phenotype in the seedling stage. 

 

Figure 5 Identification of regulatory elements in ZmRap2.7. A The open chromatin region distribution 

of 70 kb sequences upstream of gene ZmRap2.7 in different tissues, and the sequence gradient value 

calculated through DeepCBA. B The identified motifs and transcription factors that can be bound in the 

two regions (chr8: 135941716-135942216; chr8: 135945716-135946216) with the highest gradient value. 

C, D The motifs and transcription factors that can be bound in the 3 kb region upstream of the TSS of 

gene ZmRap2.7. (In the figure,  represent DNase-seq, ATAC-seq, H3K4me3, and H3K9ac 

respectively.) 

 

Figure 6 DeepCBA edits the maize genes of ZmCLE7 and ZmVTE4 to achieve accurate expression 

prediction. A The distribution results of four histone modifications (H3K27ac, H3K4me3, H3K27me3, 

H3K9ac) and chromatin open regions within the 4 kb upstream region of the gene ZmCLE7. B Schematic 

diagram of 6 pieces of editing information for ZmCLE7 in the published literature (Liu et al., 2021). C 

DeepCBA was used to predict the expression of gene-edited sequences in (b) and compare it with 

Quantitative Real-time PCR (qPCR) results in the published literature. D Using the sliding windows 

method (window size = 200 bp, step = 200 bp) to process the 4 kb sequence of ZmCLE7. E The predicted 

expression of the edited sequences in (d) using DeepCBA. F Distribution of three histone modifications 

(H3K27ac, H3K4me3, H3K9ac) and open chromatin regions within the 4 kb region upstream of the gene 

ZmVTE4. G Gene editing events in the 4 kb region upstream of ZmVTE4. H Expression comparison of 

ZmVTE4 predicted by DeepCBA and the results of leaf Quantitative Real-time PCR (qPCR) for the 4 kb 

upstream region editing of ZmVTE4. 
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Figure 7 The online website of DeepCBA. A The functions of DeepCBA online website. B DeepCBA 

provides the function of high-precision gene expression prediction based on chromatin interaction of four 

crops: maize, rice, cotton and wheat. Users can freely select relevant models to achieve the prediction 

tasks. C DeepCBA implements a parallel computing algorithm. The prediction results are sent to users 

via email and users can view the results according to the Job_id. D DeepCBA provides a visualization 

interface to display the gradient importance of the input sequences affecting gene expression. 
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