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Abstract 16 

Phenotypic prediction is a promising strategy for accelerating plant breeding. Data from multiple 17 

sources (called multi-view data) can provide complementary information to characterize a 18 

biological object from various aspects. By integrating multi-view information into phenotypic 19 

prediction, a multi-view best linear unbiased prediction (MVBLUP) method was proposed in this 20 

paper. To measure the importance of multiple data views, the differential evolution algorithm with 21 

an early stopping mechanism was used, by which we obtained a multi-view kinship matrix and 22 

then incorporated it into the BLUP model for phenotypic prediction. To further illustrate the 23 

characteristics of MVBLUP, we performed the empirical experiments on four multi-view datasets 24 

in different crops. Compared to the single-view method, the prediction accuracy of the MVBLUP 25 

method has improved by 0.038 to 0.201 on average. The results demonstrate that the MVBLUP is 26 

an effective integrative prediction method for multi-view data. 27 

 28 

 29 
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 34 

Introduction 35 

 36 

Phenotype prediction is a powerful tool that allows for the early assessment of traits in 37 

individuals prior to planting, thereby accelerating the breeding process and significantly reducing 38 

its duration. This prediction is primarily achieved through genomic prediction (GP), a concept 39 

initially introduced by Meuwissen for animal breeding (Meuwissen et al., 2001). Since then, 40 

various methods have been employed to predict traits, broadly categorized into traditional 41 

statistical methods and machine learning approaches. Traditional statistical methods encompass 42 

best linear unbiased predictions (BLUP) (Henderson, 1975), least absolute shrinkage and selection 43 

operator (LASSO) (Usai et al., 2009), and Bayesian-based methods such as Bayes A, Bayes B, 44 

Bayesian LASSO (Meuwissen et al., 2001; Yi and Xu, 2008; de los Campos et al., 2009). On the 45 

other hand, machine learning approaches include support vector machine (SVM) (Maenhout et al., 46 

2007), random forest (RF) (Holliday et al., 2012), deep convolutional neural networks (DeepGS) 47 

(Ma et al., 2018), and deep neural network for genomic prediction using multi-omics data 48 

(DNNGP) (Wang et al., 2023). Notably, DNNGP incorporates a batch normalization (BN) layer 49 

to mitigate overfitting and can be viewed as an advanced version of DeepGS. Other notable 50 

approaches include extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016; Xu et al., 51 

2016) and its faster version, light gradient boosting machine (LightGBM) (Yan et al., 2021). 52 

Multi-view data refers to data from multiple sources that offer complementary information to 53 

characterize a biological object from various perspectives. These data can include different groups 54 

of samples measured by the same feature set (multi-class data), the same samples with various 55 

feature sets (e.g., multi-omics data), the same samples by the same set of features under different 56 

conditions (e.g., multi-environmental data), or different features and different samples in the same 57 

system (multi-relational data) (Li et al., 2018). Such data are ubiquitous in the real world. For 58 

example, a sample can be characterized by its genotype, gene expression levels, and metabolomic 59 

data, each serving as a unique view of the sample. Compared to single-view data, multi-view data 60 
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can provide more complementary information, and thus, effective integration of multi-view data 61 

has the potential to enhance model prediction performance (Serra et al., 2015; Dimitrakopoulos et 62 

al., 2017; Montesinos-López et al., 2018). 63 

Recent studies have demonstrated that integrating multi-view data can lead to higher 64 

prediction accuracy. For example, incorporating transcript levels from seedlings with genetic 65 

markers into a joint model improved the prediction of mature maize traits (Azodi et al., 2019). By 66 

integrating metabolomics data into genomic prediction of hybrid yield of rice, predictability was 67 

enhanced by approximately 30% (Xu et al., 2016). During the learning process of a LASSO model 68 

with genome-wide markers, sequential integration of transcriptome and metabolome features 69 

allowed for iterative learning of three layers of features, resulting in significant improvement in 70 

rice yield trait prediction (Hu et al., 2019). Additionally, incorporating genotype × environment 71 

interaction (G×E) into a GP model has been shown to improve prediction accuracy (Montesinos-72 

López et al., 2018; Crossa et al., 2021; Xu et al., 2022; Barreto et al., 2024). 73 

Despite the demonstrated efficiency of multi-view integration prediction, there is still 74 

considerable room for improvement in learning from different data views. The relationship among 75 

different views is often complex, with different data sources potentially containing varying 76 

amounts of information and noise. The quality of data typically varies across different samples, 77 

meaning that one view may be informative for one sample but not for another. Existing multi-view 78 

methods often treat each view with equal importance, tune their weights to fixed values, or 79 

integrate them with a black-box machine learning framework (Wang et al., 2021). Therefore, there 80 

is a need to develop new methods for integrating multi-view information. 81 

The differential evolution algorithm (DE), first proposed by Storn and Price, is a population-82 

based evolutionary algorithm (EA) designed to search for a parameter set that maximizes a target 83 

function (called a fitness function) (Storn and Price, 1997). The algorithm mimics natural evolution 84 

through an iteration process involving mutation, crossover, and selection, evolving the population 85 

towards better solutions. In the mutation phase, DE generates a new individual (called the mutant 86 

vector) by computing the difference between two randomly selected individuals, scaling the 87 

difference by a factor, and adding the result to a third randomly selected individual. At the 88 

crossover stage, a trial individual can be generated by combining the mutant individual with a 89 

target individual with a certain probability determining which genes come from the mutant and 90 

which from the target individual. The selection step evaluates the fitness value of the trial 91 
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individual and compares this fitness value with that of the target individual. If the fitness of the 92 

trial individual is better, replace the target individual with the trial individual in the population. 93 

Otherwise, keep the target individual. It ensures that only individuals with improved fitness are 94 

retained in the population. 95 

In this study, we adapted DE to establish an adaptive multi-view integration strategy to better 96 

measure the importance of different views. By combining this adaptive integration strategy with 97 

the common statistical prediction model, BLUP, we proposed a multi-view best linear unbiased 98 

prediction (MVBLUP) method for phenotype prediction. The schematic workflow of the method 99 

is illustrated in Fig. 1, and details of the algorithm can be found in the Method subsection of the 100 

paper. To evaluate the performance of the MVBLUP, we compared its prediction accuracy with 101 

BLUP, LASSO, and XGBoost using single-view and multi-view data from tomato, rice, and maize 102 

datasets of diverse sizes. Numerical results demonstrate that MVBLUP is a promising and practical 103 

approach for integrating multi-view data for phenotype prediction. 104 

 105 

Results 106 

 107 

A comparative analysis of the results was conducted by using MVBLUP, BLUP, LASSO, 108 

and XGBoost, each evaluated separately on the datasets Tomato332, Rice210, Maize368, and 109 

Maize282. The standard for assessing these comparison results was the average prediction 110 

accuracy derived from 50 random five-fold cross-validation. Specifically, this involved calculating 111 

the mean Pearson’s correlation coefficient (PCC) between the predicted and observed values 112 

across 50 random tests. 113 

 114 

MVBLUP for predicting solid content trait (SSC) trait of Tomato332  115 

 116 

The analysis was initiated by assessing the prediction accuracy of MVBLUP for the fruit-117 

soluble SSC trait of Tomato332. Three distinct views, single nucleotide polymorphisms (SNP), 118 

insertions and deletions (InDel), and structural variants (SV), were selected to construct a multi-119 

view prediction. 120 

To highlight the distinct information conveyed by different views, heatmaps of their 121 

respective kinship matrices were presented in Fig. 2A. These heatmaps unveiled discernible 122 
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variations in the similarity patterns across the data from the three different views. For each view, 123 

LASSO, BLUP, and XGBoost were employed independently to predict the SSC trait. 124 

The results demonstrated that prediction accuracy varied depending on the view data utilized, 125 

even when the same method was applied. This further illustrated the distinctiveness of the 126 

information carried by different view data (Fig. 2B). Notably, the BLUP method exhibited the 127 

highest prediction accuracy across all three types of view data. Given the robust performance of 128 

BLUP (Xu et al., 2024), multi-view information was integrated based on BLUP, leading to the 129 

development of the MVBLUP method. 130 

Comparisons of BLUP using single-view data, MVBLUP with pairwise integrative views, 131 

and MVBLUP with all three integrative views were given (Fig. 2C). Results revealed that 132 

integrating additional views improved prediction accuracy. BLUP with a single InDel feature 133 

performed the worst (0.347). When MVBLUP incorporated pairwise-view features, the prediction 134 

accuracy rose to 0.384. With all three views integrated, MVBLUP achieved the highest accuracy 135 

of 0.398. 136 

Including both SNP and InDel features in LASSO and XGBoost models (Fig. 2D) led to 137 

prediction accuracies of 0.200 and 0.319, respectively, making improvements over single-view 138 

data. This trend aligns with the results observed in the MVBLUP model (Fig. 2C), suggesting that 139 

MVBLUP’s enhanced prediction accuracy is partly attributed to the complementarity of multi-140 

view data. 141 

It is crucial to note that directly integrating multi-view information into a model can 142 

sometimes reduce prediction accuracy if the information is redundant or incompatible. For instance, 143 

when LASSO and XGBoost methods incorporated the SV feature, their prediction accuracy 144 

decreased by 0.218 and 0.163 respectively, compared to when they used SNP feature (Fig. 2B). 145 

Additionally, the introduction of the SV feature further reduced the prediction accuracies of both 146 

methods to 0.131 and 0.261 respectively (Fig. 2D). This highlights the significance of extracting 147 

complementary information while excluding redundant and incompatible information during the 148 

process of multi-view data fusion. 149 

One solution to this challenge is assigning weights to the multi-view data entering the model. 150 

Based on BLUP, three weight assignment methods: uniform weights, weights based on the 151 

prediction accuracy of the training set, and optimal weights learned by a differential evolution 152 

algorithm (MVBLUP), were employed for multi-view integration. Comparative analysis revealed 153 
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that MVBLUP outperformed the other two methods, achieving a 0.022 improvement in prediction 154 

accuracy (Fig. 2D). Consequently, we adopted the MVBLUP approach for integrating multi-view 155 

data. 156 

 157 

MVBLUP for predicting four traits of Rice210  158 

 159 

For the dataset Rice210, three distinct types of omics data, genomic (G), gene expression (E), 160 

and metabolomic (M), were meticulously selected and seamlessly integrated into the MVBLUP 161 

framework to predict four traits: grain number per panicle, 1000 grain weight, yield per plant, and 162 

tiller number per plant. Notably, MVBLUP demonstrated remarkable prediction accuracy, 163 

outperforming the single-view BLUP method for three out of the four traits being assessed (Fig. 164 

3A–3C). Specifically, MVBLUP surpassed the single-view BLUP method by approximately 0.05 165 

in predicting grain number per panicle (Fig. 3A). For the yield per plant trait, MVBLUP achieved 166 

an impressive prediction accuracy of 0.724, which has been significantly improved by 0.296 167 

compared to the single-view BLUP using genomic data alone (Fig. 3C). 168 

However, it is worth mentioning that the results for the tiller number per plant trait were 169 

somewhat unexpected. In this case, MVBLUP’s accuracy of 0.707 was slightly lower than that of 170 

the single-view BLUP with genomic data which was 0.713 (Fig. 3D). 171 

 172 

MVBLUP for predicting eight traits of Maize368 173 

 174 

In the context of the Maize368 dataset, MVBLUP was employed to predict eight diverse traits: 175 

heading date, silking time, pollen shedding, cob diameter, ear diameter, ear length, ear leaf width, 176 

ear leaf length. This prediction was facilitated by the integration of three-view data, comprising 177 

genomic (G), gene expression (E), and metabolomic (M). MVBLUP demonstrated remarkable 178 

prediction accuracies for seven of these traits (Fig. 4A–4G). Specifically, for the trait of heading 179 

date, MVBLUP surpassed the prediction accuracy of the single-view BLUP method with genomic 180 

data by a margin of approximately 0.041 (Fig. 4A). In the case of silking time, MVBLUP achieved 181 

an accuracy of 0.632, marking a 0.073 increase in accuracy compared to the single-view BLUP 182 

utilizing genomic data (Fig. 4B). The only trait where MVBLUP’s performance was somewhat 183 
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less impressive was ear leaf length, with a prediction accuracy of 0.609, which was marginally 184 

lower than the accuracy achieved by the single-view BLUP with genomic data (Fig. 4H). 185 

 186 

MVBLUP for predicting six traits of Maize282  187 

For the Maize282 dataset, MVBLUP was utilized to predict six traits: days to anthesis, plant 188 

height, ear height, node number below ear, leaf width, weight of 20 kernels. This prediction was 189 

enabled by the integration of eight views, including genomic data (G) alongside gene expression 190 

data sourced from seven distinct tissues (E1–E7). MVBLUP exhibited superior prediction 191 

accuracy for five out of the six traits when compared to BLUP utilizing individual views (Fig. 5A–192 

5E). Notably, MVBLUP surpassed the prediction accuracy of the single-view BLUP method with 193 

genomic data for the trait of node number below ears by a margin of approximately 0.039 (Fig. 194 

5D). For the trait of weight of 20 kernels (Fig. 5F), while MVBLUP’s accuracy of 0.495 was 195 

slightly lower than the optimal accuracy of 0.506 achieved by BLUP with the E3 view (gene 196 

expression data from the tissue of the third leaf from the base), it still exceeded the performance 197 

of the single-view BLUP method, which utilized genomic data, by a notable margin of 198 

approximately 0.027. 199 

The efficiency of MVBLUP in the Maize282 dataset was determined by the optimal weight 200 

calculated by the DE algorithm. To demonstrate the convergence of the DE algorithm, the iteration 201 

process of MVBLUP on Maize282 was shown (Fig. 6). For this dataset, the initial population size 202 

was set as 40, with eight weight parameters needing optimization. It showed that the algorithm 203 

converged steadily to the optimal solution as the iteration progressed (Fig. 6). Although the 204 

maximum iteration number of the DE algorithm was set at 50, the algorithm stabilized after 43 205 

iterations. The early stopping mechanism, which was triggered when the maximum error of the 206 

cost function value at two adjacent iteration points fell below a specified tolerance, was 207 

instrumental in saving computational costs. 208 

To further validate the effectiveness of the MVBLUP method, numerical experiments 209 

analogous to those performed on the Tomato332 dataset were conducted using the Rice210, 210 

Maize368, and Maize282 datasets. These experiments involved comparisons with LASSO, 211 

XGBoost, BLUP integrating each view with uniform weights (BLUP_W1), and BLUP integrating 212 

each view with fixed weights determined by the average accuracy of five-fold cross-validation on 213 

single-view data training sets (BLUP_W2). The results of these comparisons are presented in Figs. 214 
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S1–S3, which showed that MVBLUP outperformed the other methods in most cases. Additionally, 215 

the average running time of MVBLUP was significantly faster than the XGBoost method on the 216 

Rice210, Maize368, and Maize282 datasets, with average running times of 28.3 seconds, 68.9 217 

seconds, and 283.8 seconds, respectively (Table S1). However, it is worth noting that MVBLUP 218 

required the longest average running time on the Tomato332 dataset, at 58.5 seconds. 219 

 220 

Discussion 221 

 222 

In this study, we aimed to enhance phenotype prediction by integrating multiple data views 223 

through the application of the MVBLUP method. Compared with existing multi-view integrating 224 

methods that assign equal importance to each view, MVBLUP offers greater interpretability by an 225 

adaptively adjusting weights strategy adjusted with the DE algorithm to quantify the contribution 226 

of different views. The strengths of MVBLUP lie in the complementary information derived from 227 

multi-view data, the accuracy of single-view models, and the synergistic integration of various 228 

views via weights learned by the DE algorithm. These advantages may vary across populations, 229 

traits, and datasets. 230 

Recently, a GA-BLUP method, which combines BLUP with a genetic algorithm (GA) to select 231 

trait-related markers, has emerged as a highly precise genomic prediction method, particularly for 232 

traits with low heritability (Xu et al., 2024). MVBLUP shares some similarities with GA-GBLUP 233 

in that both utilize evolutionary algorithms for selection. Specifically, MVBLUP employs DE for 234 

selecting multi-view data, whereas GA-GBLUP uses GA for marker selection. Although DE and 235 

GA share fundamental operators like mutation, crossover, and selection, they differ in key aspects. 236 

Notably, the mutation operator in DE fundamentally differs from that in GA. In GA, mutation 237 

typically involves randomly altering individual bits or genes in a chromosome, whereas DE 238 

employs a differential mutation strategy that explores the search space more efficiently and 239 

effectively. In addition, GA excels in discrete optimization problems due to its encoding and 240 

decoding mechanism tailored for combinatorial optimization, whereas DE performs better in 241 

continuous optimization problems, which are more suitable for integrating multi-view data in this 242 

study. 243 

MVBLUP demonstrated superior prediction accuracy compared to BLUP, LASSO, and 244 

XGBoost, both with single-view and multi-view data, across four datasets, highlighting its 245 
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effectiveness and applicability. However, it is worth noting that MVBLUP slightly 246 

underperformed in three specific cases. For instance, in predicting the tiller number per plant trait 247 

of the Rice210 dataset, the accuracy of MVBLUP (0.707) was marginally lower than that of single-248 

view BLUP with genomic data (0.713). We hypothesize that the slight decrement in performance 249 

for certain traits could be attributed to discrepancies in data distributions between the training and 250 

test datasets, which may lead to the model excelling on the training set but struggling with 251 

generalization to the test set. During MVBLUP’s learning process, optimal weights were selected 252 

based on the highest fitness function value on the training set. However, in some instances, despite 253 

achieving optimized training performance, the testing accuracy fell short of expectations. To 254 

illustrate this phenomenon, we randomly divided the Rice210 dataset into training and test sets 50 255 

times and calculated the accuracy using MVBLUP and single-view BLUP based on genomic data 256 

after each division. MVBLUP exhibited better training accuracy than the single-view BLUP 257 

method in each training set (Fig. S4A). However, in terms of test performance, MVBLUP showed 258 

lower prediction accuracy in some test sets (Fig. S4B). This comparison underscores the potential 259 

discrepancy between training performance and actual testing outcomes, which could be partially 260 

mitigated by increasing the sample size of the dataset. 261 

Moreover, a deeper exploration of MVBLUP’s enhancements is crucial for future research. 262 

In this study, we assigned weights using the DE algorithm, commonly used in vast and complex 263 

parameter spaces. However, with a maximum of eight multi-view data sources, the full advantages 264 

of DE were not fully demonstrated. Importantly, our MVBLUP framework is inherently scalable 265 

to accommodate a broader range of multi-view scenarios. In breeding, MVBLUP offers a solution 266 

for efficiently integrating multi-view data including genomic data, red-green-blue (RGB) images, 267 

and spectrum image-based phenomic data. The use of Unmanned Aerial Vehicles (UAVs) for 268 

high-throughput phenotyping will drastically accelerate the collection of multi-view data related 269 

to plant physiological status throughout the growth period, achieving both efficiency and cost-270 

effectiveness. Alternatively, if focus solely on genomic data, we can categorize the data by 271 

chromosomes and assign weights accordingly. Furthermore, we can assign weights to each SNP 272 

marker and employ the DE method to learn and optimize these weights. As an evolutionary 273 

algorithm, DE has the potential to avoid local optima but may compromise computational 274 

efficiency. Therefore, future research could explore efficient alternatives, such as improved DE 275 

strategies with accelerated convergence (Bilal et al., 2020). 276 
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 277 

Materials and methods 278 

 279 

Data sources 280 

 281 

The Tomato332 dataset comprises 332 materials from three tomato subspecies: currant tomato 282 

(PIM), cherry tomato (CER), and large-fruited cultivated tomato (BIG). The genotype data for this 283 

dataset is a call set named TGG1.1-332 from the tomato graph pangenome, which encompasses 284 

6,971,059 SNPs, 657,549 InDels, and 54,838 SVs. A crucial phenotypic trait in this dataset is the 285 

fruit soluble solids content (SSC), which is significant for both yield and flavor (Zhou et al., 2022). 286 

By applying Principal Component Analysis (PCA) to the genotype data, the dataset was reduced 287 

to 220 SNPs, 289 InDels, and 277 SVs, which were then used as multi-view data for predicting 288 

the SSC trait (Wang et al., 2023). 289 

The Rice210 dataset consists of 210 recombinant inbred lines (RILs), obtained through the 290 

crossing two rice varieties Zhenshan 97 and Minghui 63 (Hua et al., 2003). Sequencing of these 291 

RILs resulted in the identification of 270,820 high-quality SNPs and 1,619 bins based on 292 

recombination breakpoints, serving as the genotype data (Yu et al., 2011). Ribonucleic Acid (RNA) 293 

was extracted from the flag leaves of the RILs during the heading stage between 8:00 and 9:30 294 

AM, and the expression levels of 24,994 genes were quantified using a microarray sequencing 295 

platform, providing transcriptomic data (Wang et al., 2014). Metabolomic data included 1,000 296 

metabolites sourced from two tissues: flag leaves at the heading stage and seeds 72 hours post-297 

germination (Gong et al., 2013). Four key agronomic traits—yield per plant, tiller number per plant, 298 

grain number per panicle, and 1000-grain weight—were collected in 2008 and 2009 from a field 299 

experiment conducted at the Farm of Huazhong Agricultural University in Wuhan, China (Yu et 300 

al., 2011). 301 

The Maize368 dataset includes 368 maize inbred lines derived from a broadly representative 302 

association mapping population encompassing tropical, subtropical, and temperate germplasm 303 

(Yang et al., 2011). These inbred lines were genotyped using four different genotyping platforms, 304 

resulting in the identification of 1.25 million high-quality SNP markers as the genotype data (Liu 305 

et al., 2017). RNA was extracted from immature kernels at 15 days post-pollination and sequenced 306 

to obtain expression levels for 28,769 genes (Fu et al., 2013). Additionally, metabolic profiling of 307 
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mature maize kernels led to the identification of 749 non-targeted metabolites (Wen et al., 2014). 308 

This study utilized eight agronomic traits previously analyzed in a Genome-Wide Association 309 

Studies (GWAS) study (Yang et al., 2014), including cob diameter, ear diameter, ear leaf width, 310 

ear length, ear leaf length, heading date, pollen shedding and silking time. These traits were 311 

collected across five environments, and their average values were used for phenotypic prediction 312 

(Yang et al., 2014). 313 

The Maize282 dataset comprises 282 maize inbred lines sourced from a US maize association 314 

mapping panel (Flint-Garcia et al., 2005). Genotyping of these inbred lines was conducted using 315 

the Illumina MaizeSNP50 BeadChip, resulting in the identification of 50,878 high-quality SNP 316 

markers as the genotype data (Ganal et al., 2011). RNA extraction and sequencing were performed 317 

on seven different tissues at specified times and locations, including the base and tip of the third 318 

leaf collected between 10:30 and 12:00, the root of a 2 cm germinated seedling, and the entire 319 

shoot of the germinated seedling collected between 11:00 and 13:00 on the day of germination, 320 

developing kernels post-pollination collected between 11:00 and 13:00, and mature leaf samples 321 

collected from a 1 cm section adjacent to the midrib of the second leaf below the tassel between 322 

11:00 and 13:00, and also between 23:00 and 1:00 (Kremling et al., 2018). Quantitative analysis 323 

of messenger RNA (mRNA) expression levels provided transcriptomic data. Six important 324 

agronomic traits, including plant height, weight of 20 kernels, node number below ear, days to 325 

anthesis, ear height, and leaf width, were used in this study (Flint-Garcia et al., 2005). 326 

 327 

Method 328 

MVBLUP is a prediction model that builds upon the BLUP framework and incorporates the 329 

DE algorithm to dynamically determine the optimal integrating weight of multi-view features. To 330 

ensure comprehensiveness, we first introduce the principle of BLUP and DE. 331 

Best linear unbiased prediction 332 

The BLUP approach relies on a mixed linear model. The fundamental model could be 333 

articulated as: 334 

𝑦 = 𝑋𝛽 + 𝜉 + 𝜀, 335 

 where: 𝑦 is an 𝑛 × 1 vector of phenotypic values of a quantitative trait for 𝑛 individuals, 𝑋 is an 336 

𝑛 × 𝑝  design matrix , 𝛽  is a 𝑝 × 1  vector of fixed effects , 𝜉~𝑁(0, 𝐾σ2)  is a 𝑛 × 1  vector of 337 

random effects, 𝜀~𝑁(0, 𝐼𝜎𝑒
2) is a 𝑛 × 1 vector of residual errors, K represents the relationship 338 
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between individuals, σ2 and 𝜎𝑒
2 are variance associated with random effects and residual errors 339 

respectively, 𝐼 is an identity matrix. The random effects vector 𝜉 can be derived using: 340 

𝜉 = σ2𝐾𝑉−1(𝑦 − 𝑋𝛽̂), 341 

where V = 𝐾σ2 + 𝐼𝜎𝑒
2 𝑎𝑛𝑑 𝛽̂ = (𝑋𝑇𝑉−1𝑋)−1(𝑋𝑇𝑉−1𝑦).  342 

 343 

The similarity function and kinship matrix 344 

Let 𝑥𝑖 denotes the input feature vector of the ith individual (for example, the expression level 345 

of the ith individual). The similarity between the ith and the jth individual is defined as: 346 

𝑘(𝑥𝑖, 𝑥𝑗) =
(𝑥𝑖,𝑥𝑗)

√(𝑥𝑖,𝑥𝑖)√(𝑥𝑗,𝑥𝑗)
, 347 

where (𝑥𝑖 , 𝑥𝑗) represents the inner product of the vector 𝑥𝑖 and 𝑥𝑗 .  348 

Based on the similarity function, we define a single view initial kinship matrix 𝐴0 as 𝐴0 =349 

(
𝑑11 ⋯ 𝑑1𝑛

⋮ ⋱ ⋮
𝑑𝑛1 ⋯ 𝑑𝑛𝑛

), where 𝑑𝑖𝑗 = (𝑥𝑖 , 𝑥𝑗) and n is the number of individuals. Further, we can define 350 

the single view kinship matrix 𝐴  as 𝐴 = (
𝑘11 ⋯ 𝑘1𝑛

⋮ ⋱ ⋮
𝑘𝑛1 ⋯ 𝑘𝑛𝑛

)   where 𝑘𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) . Finally, we 351 

define the relationship matrix 𝐾 which integrates multiple views of data as: 𝐾 = 𝑤1
2 ∗ 𝐴10+𝑤2

2 ∗352 

𝐴20 + ⋯ + 𝑤𝑚
2 ∗ 𝐴𝑚0, where 𝐴𝑖0 is the ith view initial kinship matrix, m is the number of view 353 

and 𝑤𝑗 is the weight of the jth view data. Here the new multi-view relationship matrix can be seen 354 

as a generalization of single view kinship matrix.  355 

 356 

Differential evolution algorithm 357 

In this study, DE is employed to identify the optimal weights for each view’s initial kinship 358 

matrix. The DE process encompasses initialization, mutation, crossover, and selection. The steps 359 

are detailed as follows: 360 

Step 1. Initialization. An initial population 𝑃0 = {𝑋𝑖
0: 𝑖 = 1,2, … , 𝑛} is generated as follows: 361 

𝑋𝑖
0 = 𝑋𝑙𝑜𝑤 + (𝑋𝑢𝑝𝑝 − 𝑋𝑙𝑜𝑤) ∗ 𝑟𝑎𝑛𝑑(0,1), 362 

where 𝑛 is the size of population, and 𝑋𝑙𝑜𝑤 and 𝑋𝑢𝑝𝑝 are lower and upper bounds of search space, 363 

respectively. 364 

Step 2. Mutation. The 𝑖th mutant individual in the 𝑔th vector generation is created according to 365 
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the following: 366 

𝑉𝑖
𝑔

= 𝑋𝑟1
𝑔

+ 𝑐(𝑋𝑟2
𝑔

− 𝑋𝑟3
𝑔

), 367 

where 𝑋𝑟1
𝑔

, 𝑋𝑟2
𝑔

 and 𝑋𝑟3
𝑔

 are the randomly selected individuals from the parent population, 𝑟1, 𝑟2,368 

𝑟3 ∈ {1,2, … , 𝑛}, and 𝑐 ∈ (0,1) is the scaling factor. 369 

Step 3. Crossover. The 𝑖th crossover individual in the 𝑔th trial vector is generated as follows, 370 

𝑈𝑖
𝑔

= (𝑈1𝑖,
𝑔

𝑈2𝑖,
𝑔

… , 𝑈𝑚𝑖,
𝑔

), 371 

𝑈𝑗𝑖
𝑔

= {
𝑉𝑗𝑖

𝑔
, 𝑖𝑓 𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ 𝛿 𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟(𝑖)

𝑋𝑗𝑖
𝑔

, 𝑖𝑓 𝑟𝑎𝑛𝑑𝑏(𝑗) > 𝛿 𝑎𝑛𝑑 𝑗 = 𝑟𝑛𝑏𝑟(𝑖)
, 𝑗 = 1,2, ⋯ , 𝑚, 372 

where ( ) [0,1]randb j    is a uniform random number, [0,1]    is a predefined crossover 373 

parameter,  ( ) 1,2, ,ranbr i m L is an index selected randomly. 374 

Step 4. Selection. Determine whether the trial vector in the crossover step should be included in 375 

next generation by a strategy as follows,  376 

1

1

,   if  ( )  ( )

,   else.

k k k

i i ik

i k

i

U f U f X
X

X

+

+

 
= 



 377 

where ( )f X is a fitness function. 378 

Step 5. Stopping criterion. If maximum error of the fitness function value between 
1k

iX +
 and 

k

iX  379 

is less than tolerance  (i.e., an early stopping mechanism), or the maximum iteration count K is 380 

reached, then DE algorithm will be stopped. 381 

Prior to training, five parameters must be set: population size 𝑛, scaling factor c , crossover 382 

parameter  , tolerance   and maximum iteration parameter K. In our experiment, population size 383 

𝑛 is set as five times the number of feature views. Specifically, 15n =  for Tomato332, Rice210 384 

and Maize368, 40n =  for Maize282. Both scaling factor c  and crossover parameter  are set as 385 

0.5, tolerance 0.0001 =  and maximum iteration number 50K = . 386 

 387 

The multi-view best linear unbiased prediction procedure 388 

MVBLUP is a flexible machine learning algorithm that integrates adaptively multi-view data 389 

for phenotype prediction. The MVBLUP process involves:  390 

Step 1 Normalization. Input vectors are normalized using the Z-score method, and initial weights 391 

are assigned randomly to establish the initial population 𝑃0 = {𝑊𝑖
0: 𝑖 = 1,2, … , 𝑛} for DE. 392 
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Step 2 Training. Repeat the following steps K times or stop with an early stopping mechanism: 393 

Step 2.1. Set 𝑘 = 1. By utilizing the “Mutation and Crossover” steps within the DE algorithm, 394 

the 𝑛 weight vectors are renewed. Subsequently, these updated weight vectors are employed to 395 

compute 𝑛 multi-view kinship matrices through the application of the similarity function. 396 

Step 2.2. Using “Selection” steps in the DE algorithm to renew the weight vector, we obtain 397 

the initial population of the next generation. The “Selection” step utilizes the average prediction 398 

accuracy derived from five-fold cross-validation on the training set as the fitness function, which 399 

can be mathematically represented as
ˆ ˆ( ( ), ( ))

( ) ( )
ˆ ˆ( ) ( )

y E y y E y
f W E

y E y y E y

− −
=

− −
, where 𝐸  represents 400 

expectation, 𝑦 is the observed value vector for a particular trait, ŷ  is the predicted value vector for 401 

the corresponding trait, and   represents the 2-norm, ( , )y y y= . 402 

Step 2.3 (Stopping criterion). If the difference between 
1( )kf W +

 and ( )kf W  is less than 403 

tolerance, then optimal weight vector is found, training will be stopped; Else, 𝑘 = 𝑘 + 1, go to 404 

Step 2.1. 405 

 406 

Step 3 (Prediction). Phenotypes are predicted using the optimized multi-view kinship matrix. 407 

 408 

Methods used for comparisons 409 

 410 

The predictive capabilities of MVBLUP were initially compared with BLUP when utilizing 411 

single-view data. Subsequently, two additional prevalent techniques: least absolute shrinkage and 412 

selection operator (LASSO) and extreme gradient boosting (XGBoost), were applied to both 413 

single-view and multi-view datasets for comparative purposes. 414 

LASSO aims to identify an optimal linear model represented as 𝑦 = 𝑋𝛼 + 𝜀, where 𝑋 is an 415 

𝑛 × 𝑑 matrix , 𝑦 is a 𝑛 − dimensional vector, 𝜀 denotes noise and 𝛼 serves as the weight vector. 416 

To determine an appropriate 𝛼, LASSO can be formulated as the following optimization problem: 417 

𝑚𝑖𝑛𝛼  
1

2
 ∑(𝑋𝑖𝛼 − 𝑦𝑖)

2 + 𝜎‖𝛼‖1,

𝑛

𝑖=1

 418 

with 𝜎 being a regularization parameter. In this study, the LASSO method was executed using the 419 

GLMNET/R package (Friedman et al., 2010).  420 
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XGBoost method, on the other hand, focuses on constructing an ensemble of trees, utilizing 421 

K additive functions to predict the output,  422 

𝑦̂𝑖 = 𝜑(𝑋𝑖) = ∑ 𝑓𝑘(𝑋𝑖)
𝐾
𝑘=1 , 𝑓𝑘 ∈ 𝐹 423 

where 𝑋𝑖 ∈ 𝑅𝑑, 𝑦𝑖 ∈ 𝑅, 𝐹 = {𝑓(𝑥) = 𝜔𝑞(𝑥)}(𝑞：𝑅𝑑 → 𝑇, 𝜔 ∈ 𝑅𝑇)  represents the space of 424 

regression trees (also called as CART), 𝑞 represents the structure of each tree, 𝑇 is the number of 425 

leaves in the tree, each 𝑓𝑘 corresponds to an independent tree structure 𝑞 and leaf weight 𝜔.  426 

To learn the functions in the model, XGBoost can be framed as the following optimization 427 

problem,  428 

𝐿(𝜑)=∑ 𝑙(𝑦̂𝑖, 𝑦𝑖)𝑖 + ∑ Ω(𝑓𝑘),𝑘  429 

where 𝑙 is a differentiable convex loss function measuring the discrepancy between the prediction 430 

𝑦̂𝑖  and the target 𝑦𝑖 , 𝛺(𝑓𝑘 ) = 𝛾𝑇 +
𝜎

2
‖𝜔‖2  serves as a regularization term penalizing model 431 

complexity, γ  and 𝜎 are regularization parameters (Chen and Guestrin, 2016). In this study, 432 

XGBoost was implemented using the xgboost/R package.  433 

 434 

Data availability 435 

The demo data, R scripts, and tutorial of MVBLUP algorithm are available for public access on 436 

GitHub at the following link: https://github.com/bjwu555/MVBLUP. 437 
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Figure Legends 558 

 559 

Fig. 1. The schematic workflow of the MVBLUP algorithm, which entails the adaptive learning 560 

of optimal weights reflecting the significance of each view via DE algorithm. These learned 561 

weights are then employed to construct a multi-view kinship matrix for the MVBLUP model. 562 

 563 

Fig. 2. Systematic test results of MVBLUP on the Tomato332 dataset. A: Heatmaps of the genetic 564 

relationships based on SNP, InDel, and SV. B: Prediction accuracy of LASSO, XGBoost, and 565 

BLUP using single-view data. C: Prediction accuracy of BLUP using single-view data and 566 

MVBLUP integrating two or three views data. D: Prediction accuracy of five methods using three 567 

views data. BLUP_W1: integrating multi-view data with uniform weights and utilizing BLUP for 568 

phenotypic prediction; BLUP_W2: integrating multi-view data with weights determined by the 569 

average accuracy of five-fold cross-validation on single-view data training sets and employing 570 

BLUP for phenotypic prediction. 571 

 572 

Fig. 3. Prediction accuracy of MVBLUP and BLUP using single-view data on the Rice210 dataset, 573 

for traits including grain number per panicle (A), 1000 grain weight (B), yield per plant trait (C), 574 

and tiller number per plant (D). G, genomic data; E, gene expression data; M, metabolomic data. 575 

 576 

Fig. 4. Prediction accuracy of MVBLUP and BLUP using single-view data on the Maize368 577 

dataset, for traits including heading date (A), silking time (B), pollen shedding (C), cob diameter 578 

(D), ear diameter (E), ear length (F), and ear leaf width (G), ear leaf length (H). G, genomic data; 579 

E, gene expression data; M, metabolomic data. 580 

 581 

Fig. 5. Prediction accuracy of MVBLUP and BLUP using single-view data on the Maize282 582 

dataset, for traits including days to anthesis (A), plant height (B), ear height (C), node number 583 

below ears (D), leaf width (E), and weight of 20 kernels (F). G, genomic data; E1–E7, gene 584 
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expression data from seven tissues, respectively, including germinating root, germinating shoot, 585 

third leaf from the base, third leaf from the top, adult leaf collected during the day, adult leaf 586 

collected at night, and mature kernel. 587 

 588 

Fig. 6. Changes in prediction accuracy and weights during the learning process of the MVBLUP 589 

algorithm. A: The training process of integrating eight single-view data sets G, E1, E2, E3, E4, E5, 590 

E6, and E7 from Maize282 using the MVBLUP method, exemplified by the maize flowering days 591 

phenotype. B: The changes in optimal weights of the eight views data during the training process. 592 

G, genomic data; E1–E7, gene expression data from seven tissues respectively, including 593 

germinating root, germinating shoot, third leaf from the base, third leaf from the top, adult leaf 594 

collected during the day, adult leaf collected at night, and mature kernel. 595 

 596 
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