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SUMMARY

Due to its excellent performance in processing large amounts of data and capturing complex non-linear rela-

tionships, deep learning has been widely applied in many fields of plant biology. Here we first review the

application of deep learning in analyzing genome sequences to predict gene expression, chromatin interac-

tions, and epigenetic features (open chromatin, transcription factor binding sites, and methylation sites) in

plants. Then, current motif mining and functional component design and synthesis based on generative

adversarial networks, large models, and attention mechanisms are elaborated in detail. The progress of pro-

tein structure and function prediction, genomic prediction, and large model applications based on deep

learning is also discussed. Finally, this work provides prospects for the future development of deep learning

in plants with regard to multiple omics data, algorithm optimization, large language models, sequence

design, and intelligent breeding.
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INTRODUCTION

Plant complex gene regulatory networks involve chromatin

interaction, gene expression, transcription factor binding

site, and open chromatin. The regulatory mechanisms

underlying these processes precisely control the expres-

sion of genes at different stages of plant development and

environmental conditions, thereby controlling plant

growth. In addition, (i) precise design of genome regula-

tory elements, (ii) prediction of protein structure and func-

tion, and (iii) intelligent breeding have also become

important research points in plant functional genomics.

As a data-driven approach, deep learning has the advan-

tage of handling massive amounts of data and capturing

complex non-linear relationships. It has been widely used in

various fields including industry, agriculture, and biology. At

present, researchers have mainly conducted genome

sequence analysis based on deep learning in humans. As

early as 2015, Zhou and Troyanskaya (2015) first introduced

convolutional neural networks (CNN) into the analysis of the

human genome and developed the sequence function

prediction model of DeepSEA. This model could directly pre-

dict non-coding variations from DNA sequences. Similarly,

Alipanahi et al. (2015) used CNN to construct a model to pre-

dict the human genome sequence and consequently protein

function. Since 2015, researchers have applied both the deep

learning methods of CNN and recurrent neural networks

(RNN) to analyze diverse biological functions. The related

research work mainly includes the prediction and analysis of

sequence function (Wang et al., 2022), methylation status

(Alam et al., 2021), enhancer element (Deb et al., 2018), chro-

matin accessibility (Shen, Chen, & Gao, 2021), and transcrip-

tion factor binding sites (Yan et al., 2022). In recent years,

novel deep learning technologies involving graph neural net-

works (GNN), generative adversarial networks (GAN), and

large-scale models have gradually been used in the study of

genome sequence analysis. With the development of

high-throughput sequencing in plants, deep learning has

gradually been adopted to analyze genome sequences in

plants such as maize, Arabidopsis thaliana, rice, wheat. These

studies have predicted (i) gene expression (Washburn
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et al., 2019), (ii) chromatin interactions (Schlegel et al., 2024),

(iii) transcription factor binding sites (TFBS) (Cheng

et al., 2023), and (iv) chromatin open regions. In addition,

some researchers have applied the novel deep learning

models (GNN, GAN) to predict protein–protein interaction

(PPI) and design sequences in plants (Chi Sr et al., 2023; Li

et al., 2024).

The existing reviews summarizing the research on deep

learning technology in genome sequence analysis mainly

concentrate on research in humans. In this review, we first

describe work on predicting gene expression in plants. Next

progresses on chromatin interaction are discussed from two

aspects: (i) utilizing DNA sequences and (ii) fusing multiple

omics data and DNA sequences. There after we summarize

the application of deep learning in predicting plant epigenetic

features, designing and synthesizing functional elements,

and predicting protein function and structure. We will addi-

tionally review research of genomic prediction and the appli-

cation of large-scale language models related to intelligent

plant breeding. Finally, we intend to discuss the future pros-

pects of using deep learning in plant genomics from the per-

spectives of (i) multi-omics data integration, (ii) algorithm

optimization, (iii) large language models, (iv) sequence

design, and finally (v) intelligent breeding. Figure 1 shows

Figure 1. Deep learning has been used in genomic analysis from the aspects of DNA, RNA, and protein.

In terms of DNA: prediction of chromatin accessibility, histone modifications, transcription factor binding, chromatin interaction, and genome folding are shown.

In terms of RNA: prediction of transcription starts sites, gene expression, translation, and binding between RNA and proteins are shown. In terms of protein:

prediction of protein interactions, protein folding, and functions are shown.
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the application of deep learning from the aspects of DNA,

RNA, and protein functionality in plants.

GENE EXPRESSION PREDICTION

The research of predicting gene expression based on deep

learning mainly includes three aspects. Namely, (i) gene

expression prediction using DNA sequence, (ii)

gene expression prediction by integrating sequence and

multi-omics data, (iii) gene expression prediction using

chromatin interaction (Table 1).

Gene expression prediction using DNA sequences

Early studies mainly used traditional machine learning

methods to predict gene expression (Beer & Tavazoie, 2004;

Cheng et al., 2011; Dong et al., 2012; Tasaki et al., 2020),

however, the accuracy of these methods is often not high.

The release of more comprehensive reference genome of

plants greatly promotes the analysis of genome sequences

and prediction of gene expression based on deep learning.

The largest advantage of the deep learning related method

is that though it only requires inputting genomic

sequences and does not require any other omics data, it

results in a high accuracy in predicting gene expression.

The most representative work is the Enformer model

reported in 2021 (Avsec, Agarwal, et al., 2021). Enformer is

a deep learning model that uses transformer architecture

and combines DNA sequences to predict human gene

expression. The model can analyze the impact of distant

elements as far as 100 kb on gene expression. Other DNA

sequence-based methods include Basenji (Kelley, 2020),

Expecto (Zhou et al., 2018), Chromoformer (Lee et al.,

2022), and Nvwa (Li et al., 2022, 2023).

The research of predicting gene expression in plants

has only gradually emerged in the recent years. In 2019,

Washburn et al. used 3 kb sequences near the gene trans-

lation start site (TSS) and translation termination site (TTS)

as the target gene sequences of maize. Subsequently, they

classified the gene expression into three categories: unex-

pressed, expressed, and highly expressed, and carried out

gene expression classification prediction in maize using

CNN. In recent years, there has been an increasing focus

on predicting gene expression in multiple plants. In 2022,

Akagi et al. conducted gene expression prediction on mul-

tiple species, including A. thaliana, Solanum lycopersicum,

Sorghum bicolor, Zea mays, etc. (Akagi et al., 2022). They

used CNN to construct prediction model based on integrat-

ing sequences of promoters and terminators with different

lengths. Meanwhile, Levy et al. developed a deep learning

model FloraBERT to predict gene expression using the

transformer architecture (Levy et al., 2022). Specifically,

FloraBERT integrates genome sequence from hundreds of

plant species and utilizes transfer learning to predict gene

expression across different species. Taking A. thaliana, S.

lycopersicum, Sor. Bicolor, and Z. mays as research

objects, Peleke et al. (2024) used the CNN model to predict

the expression of the gene flanking regions of the above-

mentioned four species. This study provides a paradigm

for predicting gene expression across species and identify-

ing conserved regulatory regions (Table 2).

Gene expression prediction by integrating sequence and

multi-omics data

The regulation of gene expression is influenced by multi-

ple factors, including DNA sequence, epigenetics, and

other omics data. To improve the prediction accuracy

and the interpretability of models, researchers have incor-

porated epigenetic and multi-omics data into prediction

models. Early researchers applied traditional machine

learning methods to predict gene expression levels, includ-

ing random forest, logistic regression, and support vector

machine (SVM) (Cheng et al., 2011; Dong et al., 2012; Karli�c

et al., 2010). With the accumulation of multi-omics data,

researchers have begun to develop various deep learning

models for predicting gene expression using multi-omics

data. The representative methods are DEcode (Tasaki

et al., 2020) and CREaTor (Li et al., 2023a). DEcode uses

genome-wide binding sites on RNAs and promoters to pre-

dict gene expression. Based on attention mechanisms,

CREaTor is constructed using the dataset of human K562

cell line. This model integrates ChIP-seq, RNA-seq,

cis-regulatory elements (CRE) features, and sequence data

to predict gene expression. Similar studies include Deep-

Chrome (Singh et al., 2016), AttentiveChrome (Singh et al.,

2017), and Xpresso (Agarwal & Shendure, 2020). The ear-

lier methods mainly use the classical CNN architecture to

construct the prediction model through integrating multi-

ple omics data such as histone modification and methyla-

tion. Until now, integrating multi-omics data and genome

sequences to predict gene expression is still lacking. In this

regard, the gap in this field undoubtedly provides new

opportunities for predicting gene expression in plants.

Predicting gene expression based on chromatin

interactions

Chromatin interactions have a significant impact on gene

expression, often manifested through the interactions

between proteins and other substances (Dong et al., 2012).

Until now, the classical deep learning methods (such as

RNN and CNN) are widely used to predict gene expression

based on chromatin interactions in humans. In an early

study, Hafez et al. utilized a semi-supervised machine

learning approach and integrated associations between

target genes and enhancers to construct a novel prediction

model (Hafez et al., 2017). With the development of 3D

genome technologies (3C, Hi-C, ChIA-PET), scholars have

improved the prediction accuracy by integrating chromatin

interactions. For example, DeepExpression used CNN

to integrate the information of enhancer–promoter

� 2024 Society for Experimental Biology and John Wiley & Sons Ltd.,
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interactions (EPIs) to predict target gene expression (Zeng

et al., 2020). In recent years, GNN has been widely applied

in gene expression prediction due to its advantages in pro-

cessing network data. The representative methods include

GraphReg (Karbalayghareh et al., 2022), GC-MERGE (Big-

ness et al., 2022), and the GNN model integrating master

node aggregation (Yan et al., 2024). In 2024, Wang et al.

constructed a high-precision model (DeepCBA) to predict

gene expression using CNN and BiLSTM based on chro-

matin interaction data (Wang et al., 2024). DeepCBA is the

first deep learning model of predicting gene expression

using chromatin interaction information in plants (maize,

wheat, cotton, and rice).

PREDICTING CHROMATIN INTERACTIONS USING DEEP

LEARNING

Revealing the potential mechanisms of enhancer–promoter

interactions (EPIs), protein–protein interactions (PPI),

enhancer targeted gene interactions (ETGs), chromatin

loops, and topologically associated domains (TADs) is cru-

cial for a comprehensive understanding of gene transcrip-

tional regulation (Whalen et al., 2016; Zeng et al., 2021). At

present, researchers mainly use genome sequences and

multi-omics data to predict chromatin interactions.

1 Using DNA or RNA sequences to predict chromatin inter-

actions. In early studies, researchers mainly utilized

sequence features and traditional machine learning

methods such as random forest, high-valued singular

value decomposition to predict chromatin interactions.

The representative studies mainly include TargetFinder

(Whalen et al., 2016) and EpiTensor (Zhu et al., 2016).

Subsequently, deep learning methods, such as CNN and

RNN, are increasingly used to predict chromatin interac-

tions. For example, SPEID (Singh et al., 2019), ChINN

(Cao et al., 2021), DeepC (Schwessinger et al., 2019), and

Akita (Fudenberg et al., 2020) all utilize CNN to predict

EPIs, PPI, etc. Similarly, researchers have used deep

learning methods to predict chromatin loops and TADs,

including 3DEpiLoop (Al Bkhetan & Plewczynski, 2018),

DeepMILO (Trieu et al., 2020), and CTCF-MP (Zhang

et al., 2018). In recent years, researchers have, moreover,

begun to integrate multiple deep learning methods to

construct more accurate models. For example, Deep-

TACT (Li et al., 2019) and CharID (Shen et al., 2022) inte-

grate CNN, RNN, and attention mechanisms in order to

predict EPIs. In the field of plants, GenomicLinks is a

deep learning model of fusing CNN and LSTM to predict

chromatin interactions in maize (Schlegel et al., 2024).

Due to the limitations in sequencing technology and

funding, it has not yet accumulated sufficient chromatin

interaction data and affected the research progress in

plant to some extent. However, researchers have carried

out prediction studies on protein–protein and protein–
lncRNA interactions in plants. The main research works

include PRPI-SC (Zhou et al., 2021), MPLPLNP (Jia &

Luan, 2022), ESMAraPPI (Zhou et al., 2023), and LPI-

LSTM-ResNet (Zhang et al., 2024).

2 Integrating multiple omics data to predict chromatin

interactions. As we know, epigenetics, open chromatin,

and other omics data have significant impacts on chro-

matin interactions. Currently, researchers have built

numerous prediction models of EPIs, ETGs, and PPI

using a wide range of epigenomic signaling and expres-

sion data. These models include RIPPLE (Roy

et al., 2015), Rambutan (Schreiber et al., 2017), CRUP

(Ramisch et al., 2019), EAGLE (Gao & Qian, 2019), and

TransEPI (Chen et al., 2022). Due to a lack of related data

in plants, using deep learning to predict chromatin

interactions is still at the theoretical level. With the

development of 3D genomic technologies of 3C, Hi-C,

and ChIA-PET, we believe that more researches of chro-

matin interaction prediction based on deep learning in

various plants will emerge in the future.

IDENTIFYING EPIGENETIC FEATURES BASED ON DEEP

LEARNING

With the continuous research of deep learning in the field

of plants, significant progress has been made in predicting

epigenetic features, such as chromatin accessibility, TFBS,

and methylation modification sites.

Table 2 Glossary used in this article

Abbreviations Full name

3C Chromosome conformation capture
AI Artificial intelligence
ATAC-seq Assay for transposase accessible chromatin
BGLR Bayesian generalized linear regression
ChIA-PET Chromosome interaction analysis by paired end

tag sequencing
ChIP-seq Chromatin immunoprecipitation sequencing
CNN Convolutional neural networks
CRE Cis-regulatory element
DAP-seq DNA affinity purification sequencing
DHS DNase hypersensitivity
EM Expectation maximization
GAN Generative adversarial networks
GNN Graph neural networks
Hi-C High-throughput chromosome conformation

capture
HMM Hidden Markov model
LASSO Least absolute shrinkage and selection operator
OCRs Open chromatin regions
PPI Protein–protein interactions
EPIs Enhancer–promoter interactions
PSSM Position-specific scoring matrix
PWM Position weight matrix
RNN Recurrent neural networks
TF Transcription factor
TFBS Transcription factor binding sites

� 2024 Society for Experimental Biology and John Wiley & Sons Ltd.,
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Open chromatin prediction

Chromatin accessibility is critical for the regulation of gene

transcription and it reflects the extent of nuclear macro-

molecule contact with DNA. Complementary to experimen-

tal techniques (DNase-seq, ATAC-seq), deep learning is

increasingly used to predict chromatin accessibility. The

main studies in this area include DeepSEA (Zhou &

Troyanskaya, 2015), Basset (Kelley et al., 2016), and Deep-

Bind (Alipanahi et al., 2015). The research of chromatin

accessibility prediction in plants is also gradually emerg-

ing. CharPlant is the first prediction model that identifies

potential open chromatin regions (OCRs) in the whole

plant genome (Shen, Chen, & Gao, 2021). This model is

based on CNN and integrates DNA sequences to learn both

sequence motifs and regulatory logic to predict chromatin

accessibility. Based on DeepSEA, PlantDeepSEA (Zhao

et al., 2021) is an online network service platform for pre-

dicting the accessibility of various plants. This platform not

only can predict CRE in several kinds of plants (A. thaliana,

rice, maize, etc.), but also can mine functional sites that

affect chromatin open regions. Other representative stud-

ies involving OCRs prediction in plants include SMOC-

(Guo et al., 2022) and DanQ-based research (Wrightsman

et al., 2022).

Prediction of transcription factor binding sites

TFBS, as a type of CRE, specifically refers to the region

specifically bound by transcription factors (TFs) and plays

a crucial role in transcriptional regulation of genes. Tradi-

tional methods for identifying TFBS, such as ChIP-seq, are

not only costly but also time-consuming. In recent years,

deep learning has been increasingly applied into the pre-

diction of TFBS. SeqConv is the first deep learning model

to predict TFBS using CNN (Shen, Pan, et al., 2021) in

plants. This model not only accurately identifies TFBS

in maize, but also integrates transfer learning to achieve

cross species prediction of TFBS between maize and Arabi-

dopsis. Similarly, PlantBind is a model of predicting TFBS

based on the attention mechanism in Arabidopsis (Yan

et al., 2022). This model can predict 315 potential binding

sites for TFs in Arabidopsis and identify TF binding motifs

using DNA shape features. Deep-BSC also uses CNN to

predict TFBS in Arabidopsis based on DNA sequences

(Bukhari et al., 2021). Subsequently, researchers improved

the TFBS prediction accuracy by integrating multiple deep

learning methods. A representative work is the PTFSpot

model, which realizes TFBS prediction by fusing Trans-

former and DenseNet (Gupta et al., 2024). This model can

learn the structure of transcription factors and the covari-

ance of TF binding regions, thereby achieving accurate

TFBS prediction. Similarly, TADA is a model of integrating

CNN and BiLSTM to predict transcriptional activation

domain in Arabidopsis (Morffy et al., 2024). This model

can analyze and identify activated regions in plant tran-

scription factors and predict their regulatory effects on

gene expression. In addition, TSPTFBS and TSPTFBS 2.0

integrated TFBS data of multiple crops (maize, rice, arabi-

dopsis, etc.) and constructed deep learning models using

DenseNet (Cheng et al., 2023; Liu et al., 2021). Furthermore,

researchers have also used the methods of DeepLIFT (Shri-

kumar et al., 2017), in silica tiling dilution, and in silica

mutagenesis to identify and mine core motifs.

Methylation site prediction

Different types of plant methylation sites, such as

N4-methylcytosine (4mC), 5-methylcytosine (5mC), and

N6-methyladenine (6mA), play a crucial role in gene regu-

lation and development. Understanding the mechanisms

of these methylated forms is crucial for revealing the epi-

genetic regulatory network in plants. However, traditional

experimental detection methods are cumbersome and

costly, while deep learning techniques have shown signifi-

cant advantages.

Early studies like iDNA4mC mainly utilized different fea-

ture extraction and encoding strategies to predict methyla-

tion sites using traditional machine learning methods (Chen

et al., 2017). With the accumulation of omics data, multiple

types of feature data are used to construct the corresponding

prediction models. For example, 4mcRed achieved prediction

of 4mC by fusing position-specific trinucleotide preference

(PSTNP) and electron–ion interaction potential (EIIP) (He

et al., 2019). In recent years, the researches of predicting 4mC

sites using deep learning have achieved good results. For

example, Deep4mC (Xu et al., 2021) and 4mcPred-IFL (Wei

et al., 2019) have implemented automatic extraction of DNA

sequence features, further improving prediction perfor-

mance. I4mCDeep further improved the prediction accuracy

and stability of 4mC by combining ResNet and various fea-

ture encoding techniques (Alam et al., 2021). Similarly,

researchers have used the strategy of combining CNN,

LSTM, and attention mechanism to build deep learning

models to improve the accuracy of predicting 5mC and 6mA.

These models include DeepSignal-plant (Ni et al., 2021),

Deep6mA (Langille et al., 2021), iM6A (Luo et al., 2022), and

SMEP (Wang et al., 2021).

USING DEEP LEARNING TO MINE MOTIFS IN PLANTS

Motifs usually refer to short sequence fragments with spe-

cific functions or structures in DNA, RNA, and protein

sequences. Motifs are often related to biological functions

of gene regulation and signal transduction. Motifs mining

methods mainly include the following two types.

1 Traditional motif mining methods. The k-mer (Morris

et al., 2014; Yang et al., 2017), position specific rating

matrix (PSSM), position weight matrix (PWM), hidden

Markov model (HMM), expectation maximization (EM)

algorithm, and Bayesian method are the traditional motif

� 2024 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2024), doi: 10.1111/tpj.17190
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mining methods. Among them, the position weight

matrix (PWM) is the most widely used method. It

describes the features of motifs by calculating the proba-

bility of each nucleotide appearing at each position in

the genome sequence, and has been widely used for

identifying TFBSs. For example, tools including MEME

(Bailey et al., 2015), STREME (Bailey & Birol, 2021),

EXTREME (Thomas-Chollier et al., 2012), and DREME

(Bailey, 2011) all utilize PWM to do calculation. These

tools have been widely used for motif mining in bioin-

formatic research.

2 Motif mining method based on deep learning. In recent

years, deep learning has become an irreplaceable

method for motif mining. Representative studies are

DeepBind (Alipanahi et al., 2015) and BPNet (Avsec, Wei-

lert, et al., 2021), which implement motif mining based

on CNN. With the continuous deepening of deep learn-

ing technology in motif mining, there are three types of

motif mining algorithms. (i) Gradient-based motif min-

ing. Saliency map (Chu, 2011) and DeepLIFT (Shrikumar

et al., 2017) are two mainstream gradient-based methods

that have been used in interpretability studies of deep

learning models. Most of the early deep learning based

researches used gradient calculation and threshold filter-

ing to mine motifs. Furthermore, exponential activation,

proxy model, stochastic gradient component based on

the gradient calculation have been proposed to mine

motifs by Koo and collaborators (Koo et al., 2021; Koo &

Eddy, 2019; Koo & Ploenzke, 2021). Similar studies

include GOPHER (Toneyan & Koo, 2023) and SQUID

(Seitz et al., 2024). (ii) Motif clustering method of inte-

grating gradient and sequence features. This method

mainly achieves hierarchical and similarity clustering of

target regions by integrating base importance scores

and sequence fragments. TF-MoDISco (Avanti Shrikumar

et al., 2020) and Puffin (Dudnyk et al., 2024) are the rep-

resentatives of this type of methods. (iii) Mining motifs

in the view of motifs interaction. The idea of this method

is to perform reverse clustering on feature maps and

combine them with position weight matrices to explore

the interactions between different motifs. For the classi-

cal research of DeepSTARR (de Almeida et al., 2022), it

explored the impact of different motif flanks and dis-

tances between motifs on model prediction performance

based on multi-task CNN. Similarly, NeuronMotif iden-

tifies important motifs and motif combinations based on

the grammatical structure between motif pairs (Wei

et al., 2023). Figure 2 shows the application of deep

learning techniques in motif mining.

DESIGN AND SYNTHESIS OF PLANT FUNCTIONAL

ELEMENTS

Functional elements refer to specific sequences that can

control plant growth and development, respond to

environmental stimuli, and regulate the synthesis of sec-

ondary metabolites. The traditional regulatory component

design relies on experimental screening methods, but

these methods are often time-consuming, labor-intensive,

and face challenges in complex plant genomes (Muthami-

larasan & Prasad, 2015). At present, the design and synthe-

sis of biological regulatory components based on deep

learning mainly include the following three aspects.

1 Design and synthesis of promoters. The design and syn-

thesis of artificial promoters aims to synthesize short,

inducible, and conditionally controlled promoters. Artifi-

cially designed promoters can coordinate the expression

of multiple genes in various metabolic and signaling path-

ways, and reduce unnecessary negative feedback (Liu

et al., 2013; Liu & Stewart Jr, 2016; Mehrotra et al., 2011;

Rushton, 2016; Rushton et al., 2002). In early studies,

researchers synthesized promoters by adjusting the posi-

tion of regulatory elements in the genome and changing

the spacing and number between elements (Acharya

et al., 2014; Cazzonelli & Velten, 2008; Deb et al., 2018;

Kumar et al., 2015). In recent years, researchers have used

deep learning to design and synthesize promoters in

Escherichia coli and other species, and representative

studies include DRSAdesign (Wang et al., 2023) and Deep-

SEED (Zhang et al., 2023). Besides, the promoter design

and synthesis model constructed in Saccharomyces cere-

visiae also verified the reliability of deep learning (Vaish-

nav et al., 2022). In the early days, the design and

synthesis of promoters in plants have mainly utilized tra-

ditional experimental methods (Chen et al., 2013; Jameel

et al., 2022; Yang et al., 2021). In recent years, the rapid

development of deep learning has made it possible to use

AI technology to design and synthesize plant promoters.

Li et al. developed the PhytoExpr model in plants using

CNN + Stacking and transformer (Li et al., 2024). This

model provides two methods for designing synthetic CRE

of 17 plants, including maize, Arabidopsis and Carica

papaya. Furthermore, the biological experiment results

showed that the designed and synthesized promoters in

maize have higher activity.

2 Design and synthesis of enhancers. An enhancer is a

type of CRE that enhances the transcriptional activity of

target genes by combining transcription factors and

other proteins. Different enhancers can regulate the

expression of different genes and participate in various

biological processes of development, differentiation, and

response to the environment (Banerji et al., 1981;

Levine, 2010; Shlyueva et al., 2014). The rapid develop-

ment of deep learning has made it possible to design

and synthesize enhancers from scratch. The most repre-

sentative research work is the DeepSTARR model (de

Almeida et al., 2022). This model focuses on Drosophila

melanogaster and designs and synthesizes enhancers

with the target activity based on predicting the activity of

� 2024 Society for Experimental Biology and John Wiley & Sons Ltd.,
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developmental and housekeeping enhancers. Similarly,

Taskiran et al. used GAN networks to design and synthe-

size enhancers in both Drosophila and humans (Taskiran

et al., 2024). Due to the limitations of plant

genome-related feature data, the design and synthesis of

plant enhancers using deep learning models is still in

the initial stage. It is foreseeable that the improvement

of data quality and the iterative development of AI tech-

nology will provide strong impetus for the design and

synthesis of enhancers in plants.

3 Design and generation of protein sequences. At present,

deep learning technology has become an indispensable

tool for designing and synthesizing protein sequences.

Sinai et al. (2017) used the variational autoencoder (VAE)

model in 2017 to transform natural proteins and design

synthetic proteins. Similar studies include ProteinMPNN

(Dauparas et al., 2022), ProtGPT2 (Ferruz et al., 2022), and

Rfdiffusion (Watson et al., 2023). ProteinMPNN is suitable

for the design of almost all protein sequences, achieving

efficient protein sequence design. As an unsupervised lan-

guage model, ProtGPT2 can generate diverse protein

sequences. To broaden the breadth of protein design

methods, GAN networks have been widely used in protein

sequence design and synthesis in different species.

FBGAN (Gupta & Zou, 2018) and ProteinGAN (Repecka

et al., 2021) are two typical methods. Experimental results

show that the designed and synthesized protein

sequences using GAN have more advantages in structure

Figure 2. Application of deep learning in motifs mining in plants.

(a) The process of detecting important motifs based on motifs interaction.

(b) On the basis of calculating the gradient of specific model, motifs are identified using the threshold filtering and clustering methods.

(c) Identifying motifs by integrating gradients and sequence features.

� 2024 Society for Experimental Biology and John Wiley & Sons Ltd.,
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and function compared to natural proteins (Anand &

Huang, 2018; Davidsen et al., 2019; Hsu et al., 2024; Karimi

et al., 2020). With the widespread application of large

models, researchers have carried out protein structure

prediction based on large-scale language models and

achieved better results (Lin et al., 2023). Due to the relative

lack of protein-related data in plants, the design and syn-

thesis of protein sequences in plants are still in the prelim-

inary research stage. It can be foreseen that using deep

learning for the design and synthesis of plant proteins will

see rapid development.

Figure 3 illustrates the implementation process of

design and synthesis of plant regulatory components and

sequences using deep learning.

PREDICTION OF PROTEIN STRUCTURE AND FUNCTION IN

PLANTS

In recent years, deep learning has made significant progress

in the field of protein structure and function prediction,

greatly promoting the development of bioinformatics.

Protein structure prediction refers to inferring its

three-dimensional structure through amino acid sequences.

Traditional experimental methods have many disadvan-

tages, such as being both time-consuming and labor-

intensive. Currently, deep learning has become an important

tool of predicting protein structure. AlphaFold2 (Jumper

et al., 2021), RoseTTAFold (Baek et al., 2021), and Alpha-

Fold3 (Abramson et al., 2024) are three representative

Figure 3. Deep learning based design and generation of functional components in plants.

(a) The functional components and sequence features are the input of the models.

(b) The process of design and generation for functional components.

(c) Evaluation of the designed regulatory components.

(d) Validate the designed and synthesized regulatory components through biological experiments.
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researches in the field of protein structure prediction. The

protein function mainly depends on its structure, and accu-

rate identification of protein function is crucial for interpret-

ing complex biology processes and accelerating genome

annotation. Recently, researchers have developed numerous

deep learning models to predict protein functions, including

DeepGOPlus (Kulmanov et al., 2020), COFACTOR (Zhang

et al., 2017), RoseTTAFold (Wang et al., 2022), and DeepFunc

(Zhang et al., 2019). The earlier studies integrated sequence,

structure, and PPI network to achieve accurate function pre-

diction of proteins. At present, the sequence, structure, and

function related to protein data in plants are relatively

scarce. With the accumulation of relevant protein data in

plants, utilizing deep learning to realize the prediction of

plant proteins will become the focus for biologists. Such

research will cover structure prediction and function annota-

tion of proteins as well as the construction of protein inter-

action networks in plants.

GENOMIC PREDICTION BASED ON DEEP LEARNING

Genomic prediction refers to using genomic and environ-

mental data to predict the field phenotype of crops, which

has significance of intelligent plant breeding, gene function

analysis, and environmental adaptability. Traditional geno-

mic prediction methods based on statistical principles are

difficult to handle complex non-linear relationships and

multi-dimensional data. In addition, the accuracy of geno-

mic prediction algorithms based on machine learning

needs further improvement. Over the past few years, deep

learning has been increasingly used for plant genomic pre-

diction research. For example, DeepGS (Ma et al., 2018),

G2PDeep (Zeng et al., 2021), and Galiana (Raimondi et al.,

2022) used CNN and multi-task neural networks to predict

the phenotypes in multiple plants, including wheat, Arabi-

dopsis, and soybean. Additionally, researchers have devel-

oped several genomic prediction models of multiple plants

based on deep learning, mainly including DNNGP (Wang

et al., 2023), SoyDNGP (Gao et al., 2023), TrG2P (Li et al.,

2024), DeepCCR (Ma et al., 2024), and GPformer (Wu

et al., 2024). The earlier methods could accurately predict

the phenotypes of maize, rice, wheat, and soybean, dem-

onstrating the great potential of deep learning in plant

genomic prediction.

As we know, the phenotype is closely related to the

field environment of crops. In recent years, biologists have

begun to fuse genotype and environmental data to predict

field phenotypes, thereby improving the accuracy of geno-

mic prediction. Some scholars demonstrated that integrat-

ing environmental variables with G 9 E interactions can

significantly improve the accuracy of predictions (Ray

et al., 2022; Tong & Nikoloski, 2021). Based on integrating

genotype and environmental data, most researchers use

statistical and Bayesian related methods, such as GBLUP,

Bayesian generalized linear regression (BGLR), and LASSO

to conduct genomic prediction research (Cui et al., 2020;

Jighly et al., 2023; Millet et al., 2019). Furthermore,

researchers have conducted in-depth studies on the plas-

ticity mechanism of crops by analyzing the interactions

between genotype and environmental factors (Fu &

Wang, 2023; Jin et al., 2023; Liu et al., 2020).

To facilitate the practical usage by biologists and

breeders, researchers have developed several genomic

prediction platforms based on deep learning in plants.

These platforms integrate different model data of genome,

transcriptome, and environmental data, to predict impor-

tant plant phenotypic traits. Integrating genotype, pheno-

type, and environmental data, the platform of CropGPT

used transformer to predict phenotypes in plants (Zhu

et al., 2024). Similarly, the CropGS-Hu model integrates

genotypes and agronomic phenotypes of seven species

including maize and rice to realize genomic prediction

(Chen et al., 2024). This model provides a one-stop service

for sequencing data input, phenotype prediction, and phe-

notype analysis. The smart breeding platform is a full pro-

cess intelligent breeding platform that integrate breeding

data management and analysis, multiple genomic selec-

tion models and computation acceleration, and phenotype

prediction of parents and excellent varieties (Li et al.,

2024). Furthermore, Shen et al. developed the platform of

BreedingAIDB that integrates genotype and phenotype

pairing data in soybean, rice, and maize to serve genomic

prediction (Shen et al., 2024).

APPLICATION OF LARGE MODELS IN THE FIELD OF

PLANTS

The large-scale language model represented by ChatGPT is

now widely used in a variety of areas. Based on massive

biological data, researchers have applied deep learning

and large-scale language models in human-related biology

research. The most representative study is DNABERT (Ji

et al., 2021), in which researchers have developed a

large-scale language model for human sequence analysis

based on BERT. Furthermore, it realizes accurate prediction

of regulatory elements, promoters, splice sites, and TFBSs.

As an improved model of DNABERT, DNABERT-2 replaced

k-mer with byte encoding and achieved excellent perfor-

mance on 36 datasets (Zhou et al., 2024). Given the rapid

development of large model techniques, researchers have

developed prediction models based on the datasets with

the scale of 10 million. Among them, Geneformer is a deep

learning model that can predict key network regulatory fac-

tors and candidate therapeutic targets using human

single-cell transcriptome data (Cui et al., 2024). Similar

studies also include nucleotide transformer (Dalla-Torre

et al., 2023), UTR-ML (Chu et al., 2024), DNAGPT (Zhang

et al., 2023), and Evo (Nguyen et al., 2024).

Correspondingly, the application of large-scale models

in plant science is constantly deepening. The large-scale

� 2024 Society for Experimental Biology and John Wiley & Sons Ltd.,
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models with the capabilities of powerful data processing

and pattern recognition have shown strong potential

applications in several fields. These areas include plant

genomics, epigenomics, gene expression prediction, multi-

omics data integration, synthetic biology, and ecology

(Lam et al., 2024). Currently, the most influential two stud-

ies involving large models for genome sequence analysis

in plants are GPN (Benegas et al., 2023) and AgroNT

(Mendoza-Revilla et al., 2024). GPN is a model of predicting

gene mutation effects by unsupervised training of genomic

DNA sequences. The model was validated in seven plant

species, including A. thaliana, Brassica rapa, and Camelina

sativa. AgroNT is another fundamental genome sequences

analysis method based on large language model in 48

plants. This model can accurately predict regulatory anno-

tations, promoter/terminator strength, and tissue-specific

gene expression. Similarly, PlantCaduceus, a plant DNA

large-model based on the Caduceus and Mamba architec-

tures, pre-trained on a curated dataset of 16 angiosperm

genomes. Additionally, PlantCaduceus successfully iden-

tifies well-known causal variants in both Arabidopsis and

maize (Zhai et al., 2024). The earlier three works provide

the direction for the widespread application of large-scale

models in plant researches in the future. Figure 4 shows

the application of large models in plant research.

CONCLUSION

With the continuous development of high-throughput

sequencing technologies and artificial intelligence algo-

rithms, applying artificial intelligence to the plant genome

data analysis will undoubtedly be an important research

direction in the future. This review discussed the future

trends of deep learning in plants from the following

aspects.

1 Multi-dimensional data fusion and construction of high-

quality datasets. Integrating data from different sources

and types can provide richer and more complete data for

the interpretation of biological processes. In the plant

field, problems of data quality are prevalent due to

factors of data labeling and sequencing techniques.

Semi-supervised or unsupervised learning methods

can effectively address the earlier problems and improve

the prediction performance of deep learning models

through data dimensionality reduction and automatic

feature extraction. Additionally, with the development of

technologies of single-cell and spatial transcriptomics,

researchers have begun to concentrate on integrating

multiple omics data. Integrating large-scale networks

and AI models related to genomics, transcriptomics,

metabolomics, proteomics, single cell, spatial transcrip-

tomics, and phenotype will become an important trend

in the future. Furthermore, the deep learning algorithms

of GNN, GAN, and diffusion have advantages of

processing non-Euclidean structured data and high-

dimensional data. Then, multi-dimensional and large-

scale datasets can be integrated effectively. The con-

struction and integration of multi-level networks using

these technologies contribute to the in-depth study of

plant biology.

2 Emerging deep learning technologies drive the rapid

development of biological research in plants. The unique

complexity and heterogeneity in plant biology research

render it necessary to develop more targeted algorithms.

In the future, biological researchers not only need to

focus on the prediction performance of models, but also

understand the specific decision-making process of

models. At present, the classic deep learning algorithms

of CNN and RNN are mainly used in the research of

plant science. Going forward, the latest developed deep

learning algorithms, such as KAN (knowledge aware

neural network), large convolution, are used to analyze

the multi-omics data of genome, transcriptome, proteo-

mics, and metabolomics. In addition, constructing a

comprehensive gene regulatory network can help to

reveal the genetic basis of complex traits. Furthermore,

it is necessary to strengthen the optimization of deep

learning algorithms, break down the barriers between

different deep learning frameworks (Tensorflow,

Pytorch, etc.), and achieve the reuse of multiple frame-

works. Moreover, utilizing more interpretable deep learn-

ing algorithms, attention mechanisms, and feature

visualization tools can help improve the interpretability

of biological mechanisms.Incorporating transfer learning

and other AI techniques to enable cross-species analysis

is also a focus in plant research. Using optimized trans-

fer learning algorithms to mine functional genes among

different plant species is of great significance for the

study of functional genomes. For example, scarcity of

annotated data often becomes an inevitable problem

when conducting research on a species rarely studied.

Combining the few-shot learning and transfer learning is

an important research direction. By pre-training deep

learning models on common species or tasks, and then

fine-tuning models using small sample data, the learning

performance of new tasks can be significantly improved.

Domain adaptive techniques can improve the effective-

ness of transfer learning by adapting the model to the

specific data distribution of the target species.

3 Open-source platforms facilitate collaborative research

among multiple species of plants. With the increasing

application of deep learning in plant research, building

open-source learning platforms has gradually become a

hot topic. The platforms leverage models pre-trained on

large-scale datasets and transfer the knowledge of these

models to specific botany-related tasks, such as gene

expression prediction, genome function prediction, and

sequence design. More importantly, these platforms can

provide a unified framework that supports researchers to

� 2024 Society for Experimental Biology and John Wiley & Sons Ltd.,
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Figure 4. The application of large models in the field of plants.

(a) The multi-modal and large-scale dataset of plants.

(b) Large model architecture based on deep learning.

(c) The widespread application of large-scale models in plants.
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integrate data from different plants and deep learning

models (such as CNN, RNN, and transformer). This

approach not only facilitates the study of individual spe-

cies, but also promotes comparative research across

species, thus revealing commonalities and characteristic

patterns among plants. Additionally, the open-source

learning platforms also support large-scale data sharing

and model reuse. Researchers can obtain the latest pre-

trained models and optimized algorithms, which can be

directly applied to specific tasks.

4 Large-scale models open up new directions in plant

research. Large-scale language models based on deep

learning techniques are being applied in plant research,

including the following aspects. (1) Large-scale and

high-precision annotation of plant genomes based on

large-scale models. (2) Analysis of gene expression regu-

lation network based on large-scale model integration of

multiple omics data in plants. (3) Apply large models to

the acquisition and measurement of high-throughput

phenotypes of crops. (4) Predicting the field phenotypes

of crops in different environmental conditions based on

large-scale models. (5) Plant disease prediction based on

large-scale models can help develop precise prevention

and control strategies.

5 Intelligent design of sequences based on deep learning

promotes the development of synthetic biology. Utilizing

deep learning to achieve intelligent design of functional

elements is a key point in the development of synthetic

biology in plants. By precisely editing and optimizing

regulatory elements (such as promoters, enhancers, etc.)

to precisely control gene expression, and improve crop

yield and quality. For example, the new developed deep

learning models of GAN and diffusion can generate

sequences with different attributes based on additional

feature information. Accordingly, the functional regula-

tory elements with specific functions can be designed

and synthesized.

6 Deep learning assists in intelligent plant breeding and

precision agriculture. By integrating genomic and phe-

notype data, deep learning models can be used to con-

struct accurate phenotype prediction models. At the

same time, the interpretability methods based on deep

learning can be used to mine genes that control impor-

tant agronomic traits. Genomic prediction not only accel-

erates the selection process of ideal breeding materials

by breeders, but also significantly reduces the time and

cost of field experiments. In addition, we can use deep

learning technologies to construct an intelligent breed-

ing decision support system. This system can optimize

the breeding process, providing comprehensive intelli-

gent services of parent selection, hybridization, and off-

spring selection. Similarly, deep learning algorithms can

effectively analyze multi-modal data, including genomes,

phenotype images, environmental sensing data, and

agricultural production. Then, it can identify key factors

that affect important traits (such as yield) of crops and

further assist in field farming operations. In addition, the

deep learning models can help optimize planting strate-

gies and resource allocation, thereby improving agricul-

tural production efficiency.

PERSPECTIVE

The future challenges of the application of deep learning in

plants include the following aspects.

i The new emerging deep learning algorithms will be

widely applied in plant genome analysis. The large

models of GPT, Mamba, LLaMA, Hyena are bound to

be increasingly used for analyzing DNA sequences. In

addition, graphical neural networks (GNNs) and self-

supervised learning methods will further optimize the

analysis of plant genome data and promote the devel-

opment of functional genomics and precision

breeding.

ii Deep learning driven the integration analysis of multi-

ple plant species. Deep learning will play an increas-

ingly important role in the multi-omics data analysis of

several species, including uncovering gene functions,

evolution, and environmental adaptability analysis.

The artificial intelligence algorithms will also play an

important role in protein sequences and single-cell

data from multiple plants.

iii Deep learning will empower accurate sequence design

and intelligent breeding of crops. Researchers will use

AI algorithms to design and generate specific gene

regulatory elements (promoters, enhancers, CRE), thus

accurately control the expression of genes and

enhance crop yield, resistance, and quality. Through

integrating various types of data (genotype, environ-

ment, phenotype), deep learning can help customize

personal breeding strategy and accelerate the process

of intelligent crop breeding.

SUMMARY BOXES

i Plant genome sequence analysis based on deep learn-

ing. On the basis of analyzing genome sequences, dif-

ferent kinds of deep learning methods have been used

to predict gene expression, chromatin interactions,

and epigenetic features in plants.

ii Design and synthesis of plant functional elements. The

deep learning algorithms of GAN, diffusion, and large-

scale models are advancing the design and synthesis

of plant functional elements (promoters, enhancers,

protein sequences, etc.).

iii Genomic prediction and intelligent design breeding.

The AI-driven genomic prediction algorithms (G*E
interactions, multiple traits) have become a research

hotspot in the field of intelligent breeding. The large-

scale algorithms will lead the construction of deep
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learning models for genome sequence analysis and

design.
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