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ABSTRACT

Phenotypic plasticity is the ability of a given genotype to produce multiple phenotypes in response
to changing environmental conditions. Understanding the genetic basis of phenotypic plasticity and
establishing a predictive model is highly relevant to future agriculture under a changing climate. Here we
report findings on the genetic basis of phenotypic plasticity for 23 complex traits using a diverse
maize population planted at five sites with distinct environmental conditions. We found that latitude-
related environmental factors were the main drivers of across-site variation in flowering time traits but
not in plant architecture or yield traits. For the 23 traits, we detected 109 quantitative trait loci (QTLs), 29
for mean values, 66 for plasticity, and 14 for both parameters, and 80% of the QTLs interacted with latitude.
The effects of several QTLs changed in magnitude or sign, driving variation in phenotypic plasticity. We
experimentally validated one plastic gene, ZmTPS14.1, whose effect was likely mediated by the compen-
sation effect of ZmSPL6 from a downstream pathway. By integrating genetic diversity, environmental vari-
ation, and their interaction into a joint model, we could provide site-specific predictions with increased
accuracy by as much as 9.9%, 2.2%, and 2.6% for days to tassel, plant height, and ear weight, respectively.
This study revealed a complex genetic architecture involving multiple alleles, pleiotropy, and genotype-by-
environment interaction that underlies variation in the mean and plasticity of maize complex traits. It
provides novel insights into the dynamic genetic architecture of agronomic traits in response to changing
environments, paving a practical way toward precision agriculture.
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INTRODUCTION

Upon environmental change, plants display a plastic response,
whereby a single genotype produces multiple phenotypes
through changes in gene expression, physiology, and morphology
(Sultan 2000; Nicotra et al., 2010). Population-level differences
in plasticity will result in genotype-by-environment (G-by-E)
interaction (Assmann 2013; El-Soda et al., 2014; Sasaki et al.,
2015), releasing heritable variations (Pigliucci 2005; Schneider
et al., 2011; Mangin et al., 2017; Vanous et al., 2019) that are

highly relevant to complex trait variation and adaptation (Kang
1997; El-Soda et al., 2014; Gage et al., 2017; Kusmec et al.,
2018). In the context of crop breeding, one strategy is to minimize
plasticity to develop a cultivar with satisfactory performance
across a wide range of environments (Lynch and Walsh 1998).
Alternatively, performance can be maximized in individual
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environments by enriching environment-specific beneficial alleles
that are conditional neutral or unfavorable in other environments
(Jannink et al., 2010; Gage et al., 2017; Ge et al., 2022; Xiao et al.,
2022). This is similar to how natural selection has acted on wild
populations, in which local adaptation has resulted in genotypes
with optimized phenotypes in their native environments that are
often maladapted in new environments (Lazzaro et al., 2008;
Hereford 2009; Anderson et al., 2013; Blanquart et al., 2013).

Increased plasticity may be the future of crop breeding and biodi-
versity management in light of climate change because such a
strategy produces highly resilient genotypes for future challenges
while achieving an optimal local phenotype. To achieve this goal,
efforts have been made to study the genetic architecture of plas-
ticity (Finlay and Wilkinson 1963; Gollob 1968; Jiang and Zeng
1995; Malosetti et al., 2013) and dissect the underlying QTLs
(quantitative trait locus; El-Soda et al., 2014; Rauw and Gomez-
Raya 2015; Kusmec et al. 2017, 2018; Li et al., 2019; Schneider
et al., 2020). Studies in maize have revealed similarities and
differences in the genetic architecture of trait mean and plasticity
(Kusmec et al., 2017; Li et al., 2019), suggesting that breeders
could manipulate trait mean and plasticity semi-independently to
meet the challenge of feeding the growing population. Other inves-
tigations have demonstrated the role of plastic QTLs in heterosis
and adaptation from the tropical to the temperate zone, paving
the way for genomics-enabled crop improvement bymanipulating
phenotypic plasticity (Li et al., 2018; Liu et al., 2021).

Despite the insightsgained through theseefforts, several questions
remain. First, there is a lack of understanding of the dynamics of
complex trait genetic architectures across environments, such as
the effects of specific environmental factors on range-wide com-
plex trait variation. How dynamic are the genetic architectures of
agronomic traits over a major production zone? Which alleles are
favored at each production site? Do they have genetic effects on
multiple traits with antagonistic pleiotropy? How much genetic
gain can be achieved by exploiting these alleles? Second, in
Fisher’s decomposition of phenotype mean (Fisher, 1918), the
environmental effect is a combinatory effect of multiple
environmental factors such as temperature, day length, and soil
conditions. With an increased ability to quantify air and soil
conditions using developments in remote sensing, it is of great
interest to deconstruct combinatory environmental effects into
effects from concrete environmental factors and study their
effects on complex trait variation and prediction. Finally, plasticity
is often treated as a composite index (Finlay and Wilkinson 1963;
Gollob 1968; Jiang and Zeng 1995; Malosetti et al., 2013),
neglecting the fact that plasticity is environmentally dependent,
being variable when quantified using different combinations of
environments. With a growing number of possible environments
to investigate, it is worthwhile to differentiate plasticity quantified
using an overall index and refine plasticity measures from specific
combinations of environments.

To provide deeper insight into these questions, we developed the
complete-diallel plus unbalanced breeding-derived inter-cross
(CUBIC) population of 1404 advanced inter-cross lines from 24
representative breeding founders (Liu et al., 2020a) and studied
the variation in 23 key agronomic traits at five sites spanning
China’s major summer maize production zone (Figure 1A) from
the northeast at Jilin (JL; N43!420, E125!180) to the central

plains at Henan (HN; N35!270, E114!010). We revealed major
contributions from latitude-related environmental factors to
across-site phenotypic variation in flowering time traits but not
in other traits. We dissected the within- and across-
environment variation into 109 QTLs with complex genetic
architectures involving multiple alleles, pleiotropy, and G-by-E
interaction. In particular, we found that extensive QTL-by-
environment interactions and dynamics in mean QTL effects
across environments were driving the variation in phenotypic
plasticity. A joint model with site-specific predictions and higher
accuracy was developed by integrating genetic diversity, envi-
ronmental variation, and their interaction, paving the way for
genomics-directed maize improvement.

RESULTS

The effect of clinal variation in environmental factors on
the mean and plasticity of 23 complex maize traits

We surveyed the performance of 23 traits across five sites from
N43!420 (JL) to N35!270 (HN; Figure 1A), spanning the major
Chinese summer maize production zone. Nearly all traits were
significantly correlated with latitude, suggesting a general
contribution of latitudinally variable environmental factors to
maize agronomic trait variation (Figure 1B–1F and Supplemental
Figure 1; Supplemental Tables 1 and 2). Flowering time traits
(days to tassel [DTT], days to silking [DTS], and days to
anthesis [DTA]) displayed the strongest latitudinal variation, and
the trait median measured at the northernmost site (JL) was
"1.5 times larger than that at the southernmost site (HN)
(Supplemental Figure 1; Supplemental Table 2). By contrast,
clinal variation in plant architecture traits (plant height [PH], ear
height, and ear leaf width [ELW]) and yield traits was weaker,
being more distinctive between the northern (JL, Liaoning [LN],
and Beijing [BJ]) and southern (Hebei Province and HN) sites
(Figure 1B and 1C and Supplemental Figure 1).

All 23 traits displayed variation in phenotypic plasticity
(Figure 1G), and yield traits were more plastic than flowering
time and plant architecture traits. Contributions from
environment and G-by-E interaction varied significantly among
the three categories of traits. For example, G-by-E made a
greater contribution to proportion of variance explained (median =
32.8%; Figure 1I) for the across-site variation in yield traits,
consistent with the observation that the proportions of non-
additive variance for yield traits were also higher than those for
flowering and architecture traits (Figure 1H). These results
illustrated a general contribution from environmental factors
and their interaction with genotype to variation in mean and
plasticity of maize complex traits; the contribution from G-by-E
was more prominent for yield traits, indicating the importance
and potential value of studying plasticity for yield improvement.

Dynamic and complex genetic architecture underlying
the mean and plasticity of maize agronomic traits

For each of the 23 traits, we derived two types of measures to
quantify phenotypic plasticity. Type I included 10 measures
(Ungerer et al., 2003; Zan and Carlborg 2020a) calculated as
pairwise differences among five sites to capture specific
plasticity (SP), and type II included 4 measures representing
overall plasticity (OP): the coefficient of variation from raw (CV)
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(Zan and Carlborg 2020a) and rank-transformed data (VarR) (Zan
and Carlborg 2020a), the second principal component (PC2) (Zan
and Carlborg 2020a), and Finlay–Wilkinson regression (FWR)
(Lian and de Los Campos 2015) (Supplemental Figure 2;
Methods). Together with the trait mean value from five sites
(mean) and BLUP (best linear unbiased prediction), these four
types of measures (SP, OP, mean, and BLUP) were used to
scan for QTLs underlying trait mean and plasticity using
genome-wide association analysis (Methods). In the following
section, we first illustrate results from DTT as an example and

then expand to results from all 23 traits. Hereafter, the 4 types
of measures are referred to as DTTBLUP, DTTx (mean measured
at site x), SP-DTTx-y (SP measured as DTTx–DTTy (where x and
y are the site names), and OP-DTTz (OP calculated using method
z; z is described under Methods).
Loci associated with variation in mean and plasticity
measures for DTT: Dynamic QTL effects across
environments lead to variation in plasticity
A total of 15 QTLs were identified: 11 QTLs for SP/OP-DTT, 7
QTLs for DTTmean/DTTBLUP, and 3 overlapping QTLs

A D G
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Figure 1. Environmental variations across China’smajor summermaize production zone and their effects on across-site variation of
maize complex traits.(A) The five surveyed sites spanning China’s major maize production zone, where 23 agronomic traits were
phenotyped for 1404 inbred lines.
(B) Boxplot illustrating the highest daily temperature (TemH; red) and daily temperature difference (TemD; cyan) from sowing to flowering at the five sites.

(C) Boxplot of day length (DayL; purple) from sowing to flowering at the five sites.

(D–F) Boxplot of days to tassel (DTT; red) (D), ear weight (EW; cyan) (E), and plant height (PH; blue) (F) measured at the five sites.

(G) Boxplot of phenotypic plasticity measured as the CV of the rank across sites (Methods). The 23 traits (labeled on the x axis) were grouped into three

categories: flowering traits highlighted in red; plant architecture traits labeled in green; and yield traits labeled in blue.

(H) Bar plot of the proportion of non-additive variance (differences between broad-sense heritability, capturing the additive and non-additive effect, and

narrow-sense heritability, capturing only the additive effect). Each vertical bar represents a trait, and the height of the bar is proportional to the difference

between corresponding broad- and narrow-sense heritability.

(I)Contributions of genotype, three environmental factors (TemH, TemD, and DayL), and their interactions to the across-site variation of the 23 agronomic

traits. Each vertical bar represents a trait, with the corresponding trait name labeled on the x axis. The colored segments within each bar represent the

contributions from genotype, TemD, TemH, DayL, and their interactions with genotype, as indicated in the legend. The height of the segment is pro-

portional to the percentage of variance explained (PVE) by the corresponding variance component.
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(Figure 2A–2D; Supplemental Tables 3–5). Themajority of theQTLs
were detected for DTTmean and SP/OP-DTT, whereas only 2 QTLs
were detected for DTTBLUP (Figure 2B). By contrasting the genetic
effects of QTLs across sites, two types of QTLs, whose effects
changed in magnitude or sign, were associated with DTT
plasticity. For example, QTL8 (Figure 2A–2C and 2E) showed a
significant effect on DTTHN (P = 1.2 3 10#7; Figure 2D) and the
SP measure DTTHN-BJ (P = 5.3 3 10#8; Figure 2E) but had no
effect on the other DTT mean and plasticity measurements
(Figure 2C–2E), indicating that changes in the magnitude of
genetic effects contributed to the variation in DTT plasticity. By
contrast, QTL14 (Figure 2A–2C and 2F) was exclusively detected
for several DTT plasticity measurements but not for any DTTmean

or DTTBLUP measurements. However, the genetic effects of
QTL14 on DTTmean changed direction from positive (DTTHN, 0.6 ±
0.2 days; P = 1.7 3 10#3; Figure 2F) to negative (DTTBJ, #0.5 ±
0.2 days; P = 7.3 3 10#3; Figure 2F), leading to a significant
association with SP DTTHN-BJ (1.1 ± 0.2 days; P = 6.3 3 10#12;
Figure 2D) andOPDTTpc2 (P = 4.13 10#9). These results indicated
that changes in magnitude and/or signs of genetic effects across

sites caused variation in plasticity, which could be detected by
genome-wide association studies (GWASs) of SP and OP mea-
surements. The changing genetic effects highlighted the effect of
QTL-by-environment interaction on variation inmean and plasticity
of complex traits.
Loci associated with variation in the remaining traits: A
complex genetic architecture involving multiple alleles,
pleiotropy, and G-by-E interaction underlies variation in
maize complex traits
For the 23 traits, we identified 109 QTLs for the 4 types of mean
and plasticity measurements (Figure 3A; Supplemental Figure 3;
Supplemental Tables 3, 4, and 6). The QTLs overlapped partially,
and 1.8%, 34.9%, 19.3%, and 21.1% of the QTLs were unique to
BLUP, SP, OP, and mean measurements, respectively
(Figure 3B). As illustrated in the previous section, QTLs
associated with SP measurements likely changed the sign or
magnitude of their genetic effects (Figure 2E and 2F) across
sites. This was supported by testing the interaction between
the detected QTLs and the five sites: 80.0% of the QTLs
showed significant interactions with latitude (Supplemental
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Figure 2. Summary of the QTLs associated with mean and plasticity measures for DTT.
(A) Manhattan plots overlaying GWAS results for the 20 mean and plasticity measurements for DTT. The black horizontal dashed line indicates the

Bonferroni-corrected genome-wide significance threshold derived as 0.05/Me (Me is the effective number of independent markers; Methods), and the

vertical dashed black lines indicate the positions of detected QTLs, labeled from 1–15.

(B) Venn diagram illustrating the overlap among QTLs detected for the 4 types of DTT measurements.

(C)QTLs associatedwith the DTTmeansmeasured at five sites and theDTTBLUP (y axis). Each dot represents a SNP, and the size of the dot is proportional

to its #Log10 p value, as indicated in the legend on the right. Loci with a p value above the genome-wide significance threshold are colored in red.

(D) QTLs associated with the DTT plasticity measurements (labeled on the y axis). Two SP measurements with no significant QTLs have been omitted.

(E and F) Genotype-to-phenotype maps, highlighting the increased power to detect additional loci by analyzing plasticity measurements, for DTTHN,

DTTBJ, DTTHN-BJ, and DTTpc2 at two QTLs, one on chromosome 5 (6 462 711 bp) and a second on chromosome 9 (35 126 793 bp).
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Table 7; Methods). These results demonstrated the dynamic
genetic effects of mean QTLs across sites and highlighted
partial overlap between QTLs regulating mean and plasticity, as
reported in previous studies (Kusmec et al., 2017; Li et al.,
2019; Liu et al., 2021).

One cluster, spanning 540 kb on chromosome 5, involved 7 SNPs
that were physically close together but not in high linkage disequi-
librium (LD; cluster 1 in Figure 3A and 3C, QTL 8 in Figure 2A); it
was detected for multiple trait means and plasticity measures at
HN. A detailed exploration showed that multiple haplotypes
were underlying this region; each of the 7 SNPs tagged a unique
haplotype (Supplemental Figure 4), suggesting that the 24
founders carried different functional variants. Each of the 7

SNPs was simultaneously associated with multiple trait means
at HN, including DTTHN, DTAHN, ELWHN, ear weight (EW)HN,
PHHN, and multiple SP measurements (Figure 3C and 3D),
indicating that this region was highly pleiotropic. The genetic
effect of this QTL was unique to HN for all associated traits; the
‘‘TT’’ genotype increased DTT, DTA, and DTS, and the ‘‘CC’’
genotype decreased ED (ear diameter), EW, ELW, and PH at HN
but not at other sites, likely because of interaction with
temperature (especially daily temperature difference [TemD])
and day length (DayL) (Figure 3E and Supplemental Figure 5),
providing an ideal candidate for use in targeted breeding at HN.

A second cluster, spanning 7.4 Mb on chromosome 8, showed
allelic heterogeneity and pleiotropic effects on multiple flowering

A B
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Figure 3. Association results of mean and plasticity for all 23 traits.
(A)Manhattan plots of GWASs from all scans, with the top panel for means and bottom panel for plasticity measurements. The red horizontal dashed lines

indicate the Bonferroni-corrected genome-wide significance threshold. The vertical dashed gray lines highlight the sites of 32 SNPs associated with more

than two measurements.

(B) Venn diagram illustrating the overlap among QTLs detected for the four types of measurements.

(C) A heatmap illustrating the p values of the 32 SNPs detected for more than two measurements (here, SNPs were used instead of QTLs because one

QTL sometimes includesmultiple SNPs that are physically close to each other but not in high LD). Each cell represents the#Log10 (p value) of a particular

SNP (x axis) associated with a specific trait (y axis on the right). The outer index on the left sidemarks themean (M; black) or plasticity (P; blue) of the traits.

The inner index marks the corresponding trait types: plant architecture (AR; purple), flowering time (FT; olive green), and yield (YD; orange). For each trait,

only the lowest p values are indicated for specific P (SP) or overall P (OP), labeled as SP trait or OP trait.

(D) The additive effects varied across sites, exemplified by cluster 1 (chromosome 5: 6 462 711 bp) on multiple traits. The traits are separated by dashed

vertical lines and labeled on the x axis. For each trait, the measurements for BLUP and individual sites are ordered (from left to right) as indicated in the

color legend. Medians and standard errors are shown by the middle point and error bars, respectively.

(E) The p values associated with tests of the interaction between this SNP (chromosome 5: 6 462 711 bp) and the three environmental factors.
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and plant architecture traits (cluster 2 in Figure 3A and 3C and
Supplemental Figure 6). However, the genetic effects were
unique to the three northern sites (JL, LN, and BJ; Figure 3C).
Compared with cluster 1, whose effects were unique to HN, such
regional effects on multiple northern sites may have led to the
detection of this QTL for multiple sites and BLUP measurements.

A third cluster (cluster 3 in Figure 3A and 3C) contributed
exclusively to variation in plasticity measurements for all
flowering time traits (DTT, DTA, and DTS) owing to the change
of additive effects from negative to positive (Figure 2F).

These results illustrate a complex genetic architecture involving
multiple alleles, pleiotropy, and G-by-E interaction underlying
variation in maize complex traits. Detection of QTLs unique to
HN and the three northern sites demonstrates a variable genetic
architecture for maize complex traits across sites, possibly
because of clinal variation in QTL effects.

Fine-mapping the detected QTLs

A few QTL peaks, such as the QTLs on chromosome 5 (6–7
Mb; Figure 3A and Supplemental Figure 4) and chromosome
8 (123–130 Mb; Figure 3A and Supplemental Figure 6) were
simultaneously associated with multiple trait means and plasticity
measurements, possibly as a consequence of extended LD.
Fine-mapping the causal variants underlying each mean and
plasticity QTL and determining whether these signals are tagging
a common signal that is simultaneously associated with multiple
trait means and plasticity measures or whether they are multiple
variants, each associated with one measure but in tight LD
with each other, is a daunting task. Although detailed analysis
(Supplemental note) showed that a large proportion of the SNPs
were tagging the same causal variants (Supplemental Figures 4
and 6), there seemed to be multiple association signals (Id SNPs,
defined here as signals that have significant p values when fitted
together in a linear model but do not necessarily have zero LD)
underlying the same QTL (Supplemental Figures 4 and 6) for
several mean or plasticity measures. For example, a detailed
exploration of the chromosome 5 QTL showed that multiple
Id SNPs were tagging different combinations of functional
haplotypes (Supplemental Figure 4), illustrating a complex
genetic architecture involving allelic heterogeneity, multiple
alleles, pleiotropy, and G-by-E interaction at the same time. To
pinpoint the causal genes in the presence of such complexity, we
used a gene-based test (Law et al., 2015) aggregating summary
statistics on SNPs up- and downstream of the annotated protein-
coding genes. We detected 300 genes (Supplemental Table 8),
24% of which were simultaneously associated with both mean
and plasticity measurements (106 for mean, 122 for plasticity, 72
for both). Among these genes, the maize FT gene ZCN8 was
detected in both mean and plasticity scans of flowering traits,
whereas ZCN18 was only associated with STI (silk-tassel interval)
plasticity (Meng et al., 2011). A benzoxazinone synthesis gene
cluster including bx1/2/3/8 on chromosome 4 was associated
with the mean of ELW. Similar conditional effects have also been
found in mutants and plants overexpressing multiple flowering
genes in Arabidopsis, such as PRR3 in the circadian clock
(Murakami et al., 2004), PIF4 in the ambient temperature pathway
(Kumar et al., 2012), and HXK1 in the sugar pathway (Matsoukas
et al., 2013; Liu et al., 2022). Although future experiments are

required to determine the biological mechanism underlying such
variation, the validation of two candidate genes in our study
suggests that the effect of genes on complex traits may, in
general, be context dependent.

The possible molecular basis of phenotypic plasticity

Previously, we linked ZmTPS14.1, which was located in the QTL
on chromosome 8 (cluster 2 in Figure 3), to variation in flowering
time mean (Liu et al., 2020b). Here, this QTL was simultaneously
associated with mean and plasticity variation in multiple traits at
the genome-wide (P = 1.53 3 10#8) or suggestive significance
threshold (P = 1.00 3 10#5). The tagging SNPs showed interac-
tions with all 3 environmental factors, suggesting a general contri-
bution of QTL-by-environmental-factor interaction to variation in
phenotypic plasticity.

To experimentally validate and evaluate the plasticity effects of
ZmTPS14.1, we planted knockout lines of ZmTPS14.1 obtained
in a previous study (Liu et al., 2020b) in JL (north China,
N43!300, E124!490) and Hainan (HaiN, south China, N18!340,
E108!430) and compared the measured flowering time
phenotypes. Consistent with the association results, the female
flowering time (DTS) of knockout lines was earlier in HaiN but
not significantly different in JL compared with that of wild-type
lines (Figure 4A and Supplemental Figures 7A and 8A;
Supplemental Table 9). To explore the underlying molecular
basis, we analyzed an in-house time-course transcriptome data-
set generated from reference accession B73 under long-day and
short-day conditions (Figure 4B). The expression of ZmTPS14.1
under both day-length conditions changed in the same direction
along the time course (Figure 4B), suggesting that there was no
day-length-dependent expression response for ZmTPS14.1.

Because it has been proposed that plastic response may involve
developmental switch genes (Sommer 2020), we explored
whether plastic effects of genes at the center of the regulatory
pathway were mediated by or interacted with downstream
genes. We therefore evaluated the expression of candidates
downstream of ZmTPS14.1. ZmTPS14.1 encodes trehalose-6-
phosphate synthase (TPS), which converts glucose-6-phosphate
into trehalose-6-phosphate, regulating vegetative development
and flowering by the miR156/SPL pathway (Tsai and Gazzarrini
2014). The expression pattern of ZmSPL6, an SPL (Squamosa
Promoter-binding protein-Like) family member downstream of
ZmTPS14.1, differed significantly in response to DayL
(Figure 4B). Knockout lines of ZmSPL6 showed earlier female
flowering in JL but no significant change in HaiN compared with
wild-type lines, which was also observed in association analysis
(Figure 4A and Supplemental Figures 7B and 8B; Supplemental
Table 9), suggesting that temperature and DayL were important
factors for the plastic effect of ZmSPL6. Thus, we proposed a
compensation mechanism from ZmSPL6 to ZmTPS14.1 in DTS
plasticity (Figure 4C). Under long-day conditions, the continuous
increase in expression of ZmSPL6 could make up for the
knockout of ZmTPS14.1, resulting in no phenotypic difference
between the ZmTPS14.1 knockout lines and the wild type
(Figure 4A). No such compensation occurred under short-day
conditions; thus, we observed a phenotypic difference between
ZmTPS14.1 knockout and wild-type lines under short-day
conditions (Figure 4A and 4C). This compensation mechanism
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wasalso reflected in theCUBICpopulation (Figure4D).Under long-
day conditions (JL), ZmTPS14.1 showed a significant association
(P = 1.53 10#2) with DTS in the TT allele background of ZmSPL6
(#) but no significant association in the GG allele background of
ZmSPL6 (+). Under short-day conditions (HN), a significant
association between ZmTPS14.1 and DTS was detected in both
the ZmSPL6 (#) (P = 8.9 3 10#5) and ZmSPL6 (+) (P = 5.0 3
10#3) backgrounds (Figure 4D). This compensation mechanism
was validated in a maize association panel (Li et al.,
2012a) whose flowering time and RNA sequencing data were
available for JL and HaiN (unpublished data). Consistent with
findings from the CUBIC population, the ZmTPS14.1 (#)/ZmSPL6

(#) lines (referred to as #/#, n = 10) flowered earlier than the
ZmTPS14.1 (+)/ZmSPL6 (+) lines (+/+, n = 10) under both long-
day (JL, P = 1.1 3 10#2) and short-day (HaiN, P = 2.5 3 10#2;
Figure 4E) conditions, and there was no significant difference in
ZmTPS14.1 expression between #/# and +/+ lines or long-day
and short-day conditions. By contrast, ZmSPL6 expression was
significantly higher in +/+ lines under both long-day (P = 9.9 3
10#5) and short-day conditions (P = 2.2 3 10#2; Figure 4F). In
the +/+ genetic background, ZmSPL6 showed higher expression
under long-day than short-day conditions (P = 2.7 3 10#2;
Figure 4G). The opposite pattern was observed in #/# lines:
ZmSPL6 expression was higher under short-day than long-day

A C
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Figure 4. The interaction between ZmTPS14.1 and ZmSPL6 reveals the genetic basis of phenotypic plasticity in flowering time.
(A)Phenotypes (days to silking [DTS]) of knockout lines andwild types ofZmTPS14.1 and ZmSPL6 at two field plantations; one plantation at JL represents

Jilin (N43!300, E124!490) and the other at HaiN represents Hainan (N18!340, E108!430). Error bars represent standard deviations. **p < 0.01 (Student’s t-

test). ns, not significant.

(B) Sampling diagram of the time-course experiment in B73 under long-day (LD) and short-day (SD) conditions. The gray and white areas represent the

dark and light time periods. Leaf tissues were harvested at three time points (9:00, 3 h of light; 12:00, 6 h of light; 15:00, 9 h of light/1 h of dark). The

expression patterns of ZmTPS14.1 and ZmSPL6 at three time points under LD conditions (blue) and SD conditions (red) are shown. The y axis represents

gene expression, which was obtained from standardization of raw read counts followed by Z score normalization. Error bars represent standard errors.

(C) The proposed compensation interaction model between ZmSPL6 and ZmTPS14.1. ZmSPL6 is highly expressed under LD conditions, which could

affect female flowering, but its expression is suppressed under SD conditions, showing no effect on flowering. The ZmTPS14.1 knockout lines showed a

difference in flowering time under SD conditions but not LD conditions because of the compensation effect of ZmSPL6. Solid lines indicate the presence

of regulation, and dashed lines indicate the absence of regulation.

(D) Phenotype (DTS in JL and HN) comparison between two alleles of ZmTPS14.1 (chromosome 8: 123 138 468 bp; C/C genotype/ +; T/T genotype/
#) in different allelic backgrounds ofZmSPL6 under LD (JL) and SD (HN) conditions (chromosome 3: 159 420 596 bp; G/G genotype/+; T/T genotype/
#). The p values were obtained by Student’s t-test.

(E) Phenotypes (DTS) of lines with ZmTPS14.1 (+)/ZmSPL6 (+) (+/+, n = 10) and ZmTPS14.1 (#)/ZmSPL6 (#) (#/#, n = 10) at two field plantations; one

plantation at JL represents Jilin (N43!300, E124!490), and the other at HaiN represents Hainan (N18!340, E108!430). Error bars represent standard

deviations.

(F) The expression of ZmTPS14.1 in lines with +/+ and #/# at two field plantations.

(G) The expression of ZmSPL6 in lines with +/+ and #/# at two field plantations.

*p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t-test).
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conditions (P = 8.13 10#3; Figure 4G), although its expressionwas
lower comparedwith the+/+ genetic background. Theplastic gene
ZmTPS14.1 was thus validated, and its effect was likely mediated
by the compensation effect of ZmSPL6 from the downstream
pathway, which may be dependent on the genetic background.

Accounting for dynamics in genetic architecture
improved complex trait prediction across environments

We evaluated the potential of integrating genetic diversity,
environmental variation, and their interaction in complex trait
prediction by jointly modeling genotype, environment, and their
interaction (referred to as the GEAI model; Methods). Two
cross-validation schemes were considered. First, we explored
the ability to predict untested lines (newly developed lines) at
the five sites using 5-fold cross-validation. In this scenario,
80% of the lines with phenotypes measured at all five sites
were randomly selected as a training set, and the remaining

20% of lines, whose phenotypes were masked as NA, were
used as a test set (Figure 5J). Within-site Pearson correlation
(r) between predicted and measured phenotypes was used to
evaluate the accuracy of the predicted phenotype at each of
the five sites. Compared with the GBLUP, with a universal predic-
tion for all sites, our model not only provided site-specific predic-
tions but also increased prediction accuracy for the majority of
traits and sites (83.0% of all traits and sites; Supplemental
Table 10; Methods). The averaged prediction accuracy for DTT,
PH, and EW increased by 3.4%, 0.6%, and 1.1%, respectively,
and the increase in prediction accuracy was more pronounced
at HN (increased by 9.9%, 2.2%, and 2.6% for DTT, PH, and
EW, respectively; Figure 5A–5C).

In the second case, we explored a series of more challenging
designs in which only a core set of lines (10%–70%) was pheno-
typed at all five sites, with the aim of predicting the performance

A B C D

E F G H

I J K L

Figure 5. Performance of the GEAI model for site-specific complex trait prediction.
(A–C) Predictability of untested lines at any of the five sites using all lines phenotyped across the five sites as training data for (A)DTT, (B) EW, and (C) PH.
(E–G) Prediction accuracy for untested lines at any of the five sites for (E) DTT, (F) EW, and (G) PHwhen 10% of the lines were phenotyped at all five sites

and the remaining lines were divided into five even sets, with each set phenotyped at only one of the five sites.

(I–K) Prediction accuracy for (I) DTT, (J) EW, and (K) PH when 70% of the lines were phenotyped at all five sites and the remaining lines were divided into

five even sets, with each set phenotyped at only one of the five sites.

(D, H, and L) Schematics of the prediction design for case I (D) and case II (H and L).
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of unphenotyped lines at each site (incomplete field trial). This
was motivated by the fact that a fraction of the breeding
material is routinely evaluated in different years and sites, result-
ing in sparse phenotype records in a long-term breeding pro-
gram. In this scenario, we randomly sampled 10%–70% of the
lines to mimic a core set of lines with measured phenotypes at
all five sites. The remaining lines were divided evenly into five
sets whose phenotypes were masked at four of the five sites
(Figure 5H and 5L). The aim was to evaluate whether the GEAI
model could outperform GBLUP in terms of within-site Pearson
correlation. The GEAI model showed higher accuracy for almost
all traits and sites. For example, at 10% overlap, our GEAI model
outperformed GBLUP predictions (P = 4.0 3 10#3) by 2.4% on
average and increased prediction accuracy at four of the five sites
by 0.4%–9.7% for DTT. At 70% overlap, the increase in accuracy
at each site was greater than at 10% overlap (1.0%–10.3%;
Figure 5E–5G and 5I–5K), and the average accuracy was
increased to 3.4%. As the number of lines phenotyped at all
sites increased from 10% to 70%, the average accuracy and
site-specific accuracy increased (Supplemental Figure 9).
Our study thus highlighted the potential of integrating QTL-by-
environment interaction for understanding and predicting
complex traits.

DISCUSSION

By surveying the performance of a genetically diverse population
across China’s major summer maize production zone, we were
able to quantify contributions from specific environmental factors
to the variation in 23 complex traits, detect plastic QTLs, and pro-
vide a more accurate site-specific complex trait prediction
model.

Contribution of environmental factors to variation in the
mean and plasticity of maize complex traits

We quantified phenotypic plasticity as a response to differences
between particular environmental sites and across all five sites,
resulting in multiple plasticity measures for the same genotype.
Despite a high overall correlation among these plasticity mea-
surements, different QTLs were detected, indicating that these
measures captured different aspects of plasticity with comple-
mentary information. Such differences in quantifying phenotypic
plasticity may be highly relevant to applications in which the
test site and target site are clearly defined. In particular, when
the mechanism by which environmental factors interact with a
plastic QTL is known, the performances of large germplasm
collections could be accurately predicted in various deployment
environments, facilitating precise breeding designs in the future.

Among the 23 traits, yield traits weremore plastic than other traits
and involved larger contributions from temperature and DayL as
well as a larger proportion of G-by-E interactions. A similar result
was reported by D’Andrea et al., (2013). A possible explanation
could be that yield traits are the result of combined effects
from vegetative and reproductive growth, with demonstrated
contributions from temperature and photoperiod (Yoshida 1981;
Wallace et al., 1993) that are likely to be equally important.
Reliable partition of the variance across five sites to particular
environmental factors is challenging because they are highly
correlated with latitude. Additional studies are needed to

explore the effects of specific environmental factors on variation
in trait mean and plasticity and to determine how differences in
genetic architecture among traits cause such differences in
phenotypic plasticity.

The genetic architectures underlying trait mean and
plasticity

Consistent with previous studies (Prado et al., 2014; Li et al.,
2019), we found partial overlaps between QTLs associated with
trait mean and plasticity. However, our interpretation is that,
conceptually, when treating phenotypic plasticity as a measure
of change for one polygenic trait across environments, such
overlap is expected. We also expect that (1) plasticity is
polygenic as a result of the polygenic architecture for the trait
itself in different environments, (2) the degree of overlap
between QTLs underlying trait mean and plasticity may vary
across studies because of detection power, and (3) QTLs
whose genetic effects differ among environments are more
likely to affect the variability of plasticity. Taking DTT as an
example, we detected 7 loci for DTT mean and 9 loci for DTT
plasticity, four of which overlapped. Changes in the magnitude
or sign of QTL effects resulted in variability in DTT plasticity,
providing support for the allelic sensitivity model (Des Marais
et al., 2013). Even though we did not detect the chromosome 9
QTL in the DTT mean scan at a genome-wide significance level,
a moderate association was found at a lower significance
threshold. In line with this result, when we aggregated the allelic
effects of mean or plasticity QTLs that were not detected at a
genome-wide significance level, we found that they contributed
significantly to variation in mean and plasticity measurements
as a group (Supplemental Figure 10; Supplemental Table 11).
We also found that SNPs with larger variability in effect size
across environments were more likely to be detected in a mean
scan and less likely to be picked up in a BLUP scan
(Supplemental Figure 11), indicating that greater variability in
effect size across environments could undermine the detection
power of a BLUP scan. Given the polygenic and dynamic
genetic architecture of trait means across environments
reported here and in previous research (Zan and Carlborg
2020a, 2020b), there may be a tighter connection between
the genetic regulation of trait mean and plasticity than has
previously been acknowledged.

Complex trait prediction across environments

When a small proportion of plant material overlapped (10%)
among sites, we found a number of sites in which GBLUP outper-
formed GEAI (Figure 5 and Supplemental Figure 8). This is
because estimation of QTL-by-environment effects is strongly
biased when the number of observations is low. Despite the
low number of overlapping materials, on an average level,
the GEAI model always offered higher prediction accuracy, and
the value of the GEAI model increased as the proportion of
overlapping plant material increased. When 100% of the plant
material overlapped among environments, prediction accuracy
increased by 0.6%–3.7% on average, and GEAI outperformed
GBLUP in 83% of cases (Figure 5). It is likely that the
linear model over- or underpredicts effects in extreme cases;
i.e., overestimating or underestimating effects at HN or JL,
leaving a few cases where GBLUP outperforms GEAI. Although
it is not perfect, we recommend using GEAI whenever a
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large proportion of materials overlap among sites in order to
achieve a higher overall performance before improved nonlinear
models are available. Compared with previously developed reac-
tion normmodels (Heslot et al., 2014; Jarquı́n et al., 2014; Jarquin
et al., 2020) for across-environment prediction, the strength of the
GEAI model is that it includes interactions between detectable
QTLs and environmental conditions. The downside is that
interactions between polygenic background and environmental
conditions are missed, and information from correlated traits is
not fully exploited. Future developments in integrating the
reaction norm model and GEAI model and attempts to borrow
information from more environmental variables (Guo et al.,
2020) and correlated traits would further improve prediction
accuracy.

METHODS

Experimental design

We developed a CUBIC population of 1404 inbred maize lines and sur-

veyed their performance for 23 agronomic traits at five sites in China’s ma-

jor maize production zone, with longitudinal variation from E114!010 at

HN to E125!180 at JL and latitudinal variation from N43!420 at HN to

N35!270 atHN.Adetaileddescriptionof thedevelopment of thispopulation

is available in Liu et al. (2020a). In brief, the inbred lines were derived from

24 elites representing 4 divergent heterotic groups using cycles of random

mating, selection, and inbreeding (Liu et al., 2020a). In 2014, all lines were

planted at five sites, including JL (N43!420, E125!180), LN (N42!030,

E123!330), BJ (N40!100, E116!210), Hebei province (N38!390, E115!510),

and HN (N35!270, E114!010), with a random order in each environment to

eliminate potential confounding effects. About 17 individual plants were

planted for each line, and one fixed line (Chang7-2) was planted after

every 50th line to evaluate field spatial heterogeneity. Because the

phenotypes of this check line showed very limited variation across the

field, no further phenotypic corrections were performed on the other

lines; thus, the raw measurements were analyzed directly. Twenty-three

agronomic traits, including 6 phenology traits, 8 plant architecture traits,

and 9 yield traits, were phenotypically evaluated. Except for six flowering

traits that were scored as the median values of replicated lines, all traits

were scored as the means of replicates (Supplemental Table 12). Three

environmental variables, including daily highest temperature (TemH),

TemD, and DayL, were obtained by first extracting the site-specific daily

variables from the corresponding closest weather station at http://data.

sheshiyuanyi.com (available in Supplemental Table 13). These daily

variables from sowing to flowering at each site were averaged to obtain

one value representing the environmental records at each site. All 1404

lines were re-sequenced, and the called genotypes are available for

download in Liu et al. (2020a). The raw fastq files were uploaded to the

NCBI Sequence Read Archive with ID PRJNA597703, and the called

SNP data in PLINK format are available at https://pan.baidu.com/s/

1AsPJLTe–gU5EN8aFTMYPA. In total, 4.38MSNPswithMAF (minor allele

frequency) > 0.03 and LD% 0.9 in a 100-kb sliding window were retained

for downstream analysis.

Partitioning the phenotypic variance into contributions from
genotype, environmental factors, and their interactions

The phenotypic variance was partitioned into contributions from geno-

type, G-by-E, and residual (environment) by fitting the following model:

yij = u+ idi +TemHj +TemDj +DayLj + idi $ TemHj + idi $ TemDj

+ idi $ DayLj +eij

(Equation 1)

This model was fitted for each of the 23 traits one at a time. yij is the trait

mean/median of individual i (i = 1.n, n = 1404, number of individuals) at

site j (j = 1.q; q = 5, number of sites); idi is the line id (genotype) coded

as a factor; and TemHj, TemDj, and DayLj are three environmental vari-

ables representing TemH, TemD, and DayL at site j. These environmental

factors were coded as numeric, assuming a linear relationship with the

phenotypic measurements. idi * TemHj, idi * TemDj, and idi * DayLj are

the interaction terms (G-by-E) between a particular line (genotype) and

the corresponding environmental factors (environment). The relative con-

tributions to total phenotypic variance from genotype and G-by-E were

estimated by their respective sum of squares (the sum of squares for id

is calculated as
Pp

1ðidi # idÞ2, and the sum of squares for the interaction

terms id $E are calculated as
Pn

1ðidi $ Ej # idi $ EjÞ2), where E stands for

TemH, TemD, or DayL.

Trait BLUP was estimated using the following model:

yij = u+Zm+ eij (Equation 2)

yij and eij are the same as model 1. m is a vector of random effects, repre-

senting the BLUP values of 1404 individuals; Z is the design matrix con-

necting the BLUPs with the corresponding phenotypic measurements;

and m is a vector of length 1404 that follows N (0, I s2g).

Estimating broad/narrow-sense heritability, non-additive
variance, and genetic correlations

Broad-sense heritability was estimated by ANOVA based on a

simple linear model fitting phenotype measured at five sites as the

response variable,with sites codedasa factor and line id as anexplanatory

variable.

yij = u+ idi + eij (Equation 3)

Variance explained by line id divide the phenotypic variance was treated

as estimates for broad-sense heritability.

A linear model (4) was used to estimate the narrow-sense heritability for

BLUP values of all 23 traits.

y = u+Zm+ e (Equation 4)

Here, y is a vector of the 1404 trait means/medians for each individual (ge-

notype) at each tested site. e is the normally distributed residual, u is the

population mean, and m is a random effect vector of the breeding values

for the 1404 individuals. Z is the corresponding design matrix obtained

from a Cholesky decomposition of the kinship matrix G, estimated using

the genome-wide markers with GCTA (Yang et al., 2011). The Z matrix

satisfies ZZ’ = G; therefore, m "is normally distributed N (0, I s2g). e is the

residual variance with e " N (0, Is2e). The narrow-sense heritability of the

fitted phenotype was calculated as the intraclass correlation h2 =

s2g/(s
2
g + s2e). AI-REML implemented in GCTA was used to obtain these

estimates (Yang et al., 2011). The additive genetic variance was s2g.

Non-additive variance was estimated as the difference between broad-

sense heritability and narrow-sense heritability (trait BLUP).

Similarly, a bivariant mixed model was fitted to obtain estimates of the ge-

netic correlation between measurements obtained from two individual

sites. Ten models were thus fitted to obtain all pairwise genetic correla-

tions among five sites. Y, m, and u from model (4) were updated to an n

3 2matrix, with n being the number of individuals and each column vector

representing measurements obtained from a particular site. This model

was fitted using the ‘‘reml-bivar’’ module (Li et al., 2012b) implemented

in GCTA software (Yang et al., 2011); details of this model are available

in Lee et al., (2012).

Quantification of phenotypic plasticity for the 23 agronomic
traits

Because all 1404 maize lines were phenotyped for 23 agronomic traits

across five sites, we quantified and studied the genetics of maize complex
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trait plasticity in response to longitudinal and latitudinal environmental

variation. The phenotypic plasticity was classified into two categories

(Supplemental Figure 2B–2E). The first category is OP, describing

plasticity across all studied environments, and the second category,

SP, is more unique to certain pairs of sites and only captures the

plasticity across two environments. The motivation underlying

such classification is that some individuals are robust across all but

a few studied sites, whereas other individuals are plastic across most

sites.

Onemetric, the pairwise difference in phenotypic value between two sites,

was used to quantify SP (Supplemental Figure 2A). Using DTT measured

at JL andHN as an example, the differences inmeasured DTT values for all

individuals (SPJL#HN
DTT = DTTJL -DTTHN) describe the SP between HN and JL

(Supplemental Figure 2B; Ungerer et al., 2003). Although DTTJL # DTTHN
and DTTHN # DTTJL differ in sign, we chose only one of them because

the sign difference does not affect the GWAS power. The only

difference is the interpretation of the estimated effect size, which

should be interpreted together with the direction of the subtraction. Four

additional approaches were used to quantify OP (Supplemental

Figure 2C–2E). First, principal-component analysis was used to quantify

OP. The influence of phenotype measurements at individual sites

on the PCs can be captured in the loadings (Yano et al., 2019;

Supplemental Figure 2C). Because PC2 captures more variation in OP

(PC2 is more representative of the phenotype differences among

environments because the loading differs more on the second PC), we

used PC2 as a measure of overall phenotypic plasticity. Second, the

across-environment variance (VAR) of the rank-transformed phenotype

proposed in Vanous et al. (2019) was used (Supplemental Figure 2D),

and the CV (Vanous et al., 2019) was also used to account for the mean

difference. The fourth score for OP uses FWR (Weber and Scheiner

1992; Lian and de Los Campos 2015) to partition the phenotype into

two components; one is constant across environments, and the other

responds dynamically to environmental changes. Using a linear mixed

model, the phenotype of each line is partitioned into these two

components, and the plasticity component is used as a measurement

of plasticity. Together, the described approaches resulted in 14

measurements of phenotypic plasticity (abbreviated as SP, PCA, VarR,

CV, and FWR). These three metrics yield 14 plasticity measurements for

each trait.

GWAS for trait mean/median and plasticity measurements

To detect genetic polymorphisms underlying variation in agronomic

trait mean and plasticity, we fitted the following linear mixed model:

Y = m+Xb+Zu+e (Equation 5)

where Y, m, Z, u, and e are the same as those defined in model (4). X is

a matrix containing the genotypes of the tested SNP (coded as 0/2 for

minor/major-allele homozygous genotypes, respectively). b is a vector

including the estimated additive allele-substitution effect for the tested

SNP. First, a genome-wide analysis across all genotyped SNPs was

conducted using GEMMA (Zhou and Stephens 2012). A subsequent

conditional analysis was performed, in which all top associated SNPs

(SNPs with the highest p value from each association QTL in the

initial genome-wide analysis scan) were included as covariates in

the design matrix X to screen for additional association signals. The

conditional analysis was repeated until no more SNPs were above

the significance threshold, and it was implemented in the ‘‘cojo’’

module of GCTA (Yang et al., 2012). The LD was high in this

population, making a Bonferroni correction assuming that all tested

markers were statistically independent too conservative. Therefore,

we estimated the effective number of independent markers (Me) (Li

et al., 2012b) and derived a less conservative genome-wide

significance threshold of 0.05/Me (1.53 3 10#8 equivalent to #Log10
p value = 7.81).

A colocalization test separates linkage from pleiotropy at
regions where multiple signals are associated with multiple
traits

Multiple association signals, each associated with one or multiple traits,

were colocalized at the same genomic regions. Because the level of LD

between the lead SNPs was very low, we could not directly determine

whether multiple independent signals detected in multiple scans and

physically close to each other derived from (1) one association signal

simultaneously associated with multiple scans (pleiotropy) or (2) multiple

associations, each associated with one scan but in tight LD with each

other. To distinguish these possibilities, we performed a multi-trait coloc-

alization analysis (Supplemental note). This method estimates a posterior

probability of whether multiple traits share a common causal variant using

summary statistics from each trait (Berisa and Pickrell 2016; Foley et al.,

2021). We first binned the genome into 1-Mb bins. Scans with Id SNPs

that fell into consecutive bins were aggregated and tested for

colocalization using the ‘‘hyprcoloc’’ R package (Berisa and Pickrell

2016; Foley et al., 2021). Given the complex population history (multi-

parental) and a limited number of recombinations, some of the

associated SNPs were very close to each other but not in high LD. To

make a comparison among the 4 types of measurements, we arbitrarily

grouped SNPs within less than 1 Mb into a single QTL.

Gene-based test to prioritize candidate genes

The LD was too extensive to directly pinpoint genes underlying the asso-

ciated loci. We therefore used a set-based analysis that aggregates sum-

mary statistics from all variants 50 kb up/downstream of the tested gene

to obtain one p value to represent its significance. The summary associa-

tion statistics, including effect sizes, standard errors, minor allele fre-

quencies, and sample size, were first extracted from the GEMMA associ-

ation output and then entered into the ‘‘fastBAT’’ module in GCTA (Bakshi

et al., 2016); 39 155 genes annotated in the B73 reference genome version

3 were used to bin the summary statistics to perform the set analysis (Law

et al., 2015).

Testing for G-by-E interaction of detected QTLs

We tested the interaction between QTLs associated with each of the 23

traits in at least one of the five sites, one QTL and one trait at a time, by

fitting the model below:

yij = u+ idi + sitej +QTLi +eij (Equation 6)

yij = u+ idi + sitej +QTLi +QTLi $ sitej + eij (Equation 7)

This model was fitted for each of the 23 traits one at a time. yij is the trait

mean/median of individual i (i = 1.n, n = 1404, number of individuals) at

site j (j = 1.q; q = 5, number of sites), idi is the line id (genotype) coded

as a factor, and sitej is a vector of characters representing the site where

the measurements were made. QTLi is the genotype of idi at the tested

QTL, andQTLi $ sitej is the interaction terms (G-by-E) between a particular

QTL and the sites (environments). A likelihood ratio test comparing the

models with (model 6) and without (model 7) the interaction between sites

was performed to calculate p values. The significance threshold was

calculated as 0.05 divided by the number of tests (0.05/143 = 3.49 3

10#04).

Experimental validation of maize flowering genes

Knockout lines of ZmTPS14.1 and ZmSPL6 were generated using a high-

throughput genome-editing system (Liu et al., 2020b). In brief, line-specific

sgRNAs (small guide RNA) were filtered based on the assembled pseudo-

genome of the receptor KN5585. The double sgRNA pool approach was

used to construct vectors. The vectors were transformed into the receptor

KN5585.Thegenotypeofgene-edited lineswas identifiedbyPCRamplifica-

tion and Sanger sequencing using target-specific primers (Supplemental

Table 14). The phenotypes of knockout lines and the wild type were
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investigated in JL (Gongzhuling, JL province, N43!300, E124!490) and HaiN

(Sanya, HaiN province, N18!340, E108!430).

Time-course transcriptome

B73 seeds were planted under two conditions: long-day conditions (14 h

light and 10 h dark) and short-day conditions (8 h light and 16 h dark). Leaf

tissues were harvested at 3 time points during one day at stage vegetative

4 (four fully extended leaves). RNA from eighteen samples (2 conditions3

3 time points3 3 replicates) was sequenced on the HiSeq 3000 platform.

Low-quality reads were removed with Trimmomatic (Bolger et al., 2014).

STAR (Dobin et al., 2013) was used to align the RNA sequencing reads

to the reference genome. HTSeq (Anders et al., 2015) was used to

obtain gene-level counts from the resulting BAM files, and genes with sig-

nificant expression changes were detected with ImpulseDE2 (Fischer

et al., 2018).

Estimating the contribution from mean and plasticity QTLs to
the variation in mean and plasticity measurements

We quantified the contribution of mean and plasticity QTLs to variation in

trait mean and plasticity by fitting the following model:

Y = X1b1 +X2b2 +Zu+ e (Equation 8)

Here, Y is a vector of length n (n = 1404), representing the trait mean or

plasticity measurement. The joint contributions from mean and plasticity

QTLs were modeled in X1b1 and X2b2, where X1 and X2 are the design

matrices and b1 and b2 are the corresponding effect sizes. Z, u, and e

are the same as defined in model 5. The Z matrix satisfies ZZ’ = G, and

u is therefore normally distributed (u " N (0, I s2g)). Contributions from

mean and plasticity QTLs were then calculated with Varm = VarðX1b1Þ
VarðyÞ and

Varp = VarðX2b2Þ
VarðyÞ .

Predicting the site-specific performance of the 23 traits

We fitted the following models to predict the performance of each site for

the 23 traits one at a time:

Y = X1b1 +Zu+ e (Equation 9)

Y = X2b2 +Zu+ e (Equation 10)

Here, Y is a vector of length n*p (n = 1404, number of individuals; p = 5,

number of sites; n*p = 7020) representing the trait means measured at

five sites; u is a vector of length n*p representing the breeding value of

the n maize line; and e is the randomly distributed residual with length

n*p. The Z matrix satisfies ZZ’ = G 5 I, where G is the identity by

state matrix, and I is a diagonal matrix of pxp. X1 is a design matrix with

one column of 1 representing column mean and an additional 4 columns

representing the environmental effects from the remaining 4 sites, and b1
is a vector of corresponding effect sizes. X2 includes all columns from X1

and additional columns with genotypes of the k QTLs associated with the

mean and plasticity measures of the tested trait and additional columns

representing the interaction between the k QTLs and the five sites,

capturing the effects of QTL-by-environmental-factor interaction. The

fitted values from model 9 are referred to as GBLUP predictions, whereas

the fitted values frommodel 10 are referred to as GEAI predictions. These

models were fitted using the ‘‘rrBLUP’’ (Endelman 2011) package in R

(https://www.R-project.org/). In the first case, 80% of the lines with

phenotypes measured from all five sites were used as a training set,

and the remaining 20% of lines, whose phenotypes were masked as NA

(not available), were used as a test set. Within-site r2 between predicted

and measured phenotypes was used to evaluate the accuracy of a

predicted phenotype at each of the five sites. In the second case, we

randomly sampled 10%–70% of the lines as a core set of lines that

have measured phenotypes at all five sites, and the remaining lines

were divided evenly into five sets whose phenotypes were masked

randomly at four of the five sites. All lines with measured phenotypes

were used as a training set, and lines masked as NA were used as

a test set. Accuracy was estimated as the regression r2 between

measured and predicted phenotypes within each site.
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