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Deep learning in regulatory genomics: from identification 
to design☆

Xuehai Hu1, Alisdair R Fernie2 and Jianbing Yan3,4

Genomics and deep learning are a natural match since both are 
data-driven fields. Regulatory genomics refers to functional 
noncoding DNA regulating gene expression. In recent years, 
deep learning applications on regulatory genomics have 
achieved remarkable advances so-much-so that it has 
revolutionized the rules of the game of the computational 
methods in this field. Here, we review two emerging trends: (i) 
the modeling of very long input sequence (up to 200 kb), which 
requires self-matched modularization of model architecture; (ii) 
on the balance of model predictability and model interpretability 
because the latter is more able to meet biological demands. 
Finally, we discuss how to employ these two routes to design 
synthetic regulatory DNA, as a promising strategy for optimizing 
crop agronomic properties.
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Transcriptional factor-binding site (TFBS)

TFBS are a subset of DNA fragments that transcription factors 
specifically bind to.

cis-regulatory elements (CREs)

CREs are noncoding DNA sequences serving as individual TFBSs to 
regulate the transcription of their target genes.

cis-regulatory modules (CRMs)

CRMs are assemblies of CREs, including promoters, enhancers, and 
silencers, which integrate the active transcription factors and the 
associated cofactors in a time- and place-specific manner to 
regulate their target genes.

Fully connected neural networks (FCNN)

FCNNs are a type of artificial neural networks that are composed of a 
series of fully connected layers. Each neuron in one layer receives the 
values from every neuron in the preceding layer, thus leading to the 
full connections.

Convolutional neural networks (CNN)

CNN inspired by the receptive field mechanism in biology, are a 
type of artificial neural networks and are utilized to process image 
data originally. Neurons in convolutional neural networks only 
accept the signals in a restricted region of the visual field (i.e., the 
receptive field), thus leading the local connections compared 
with FCNN.

Recurrent neural networks (RNN)

RNNs applicable to processing sequential data, are a class of neural 
networks, where the connections between neurons from one layer 
form a cycle, enabling outputs from some nodes at previous time 
steps to affect subsequent input to the same nodes, and therefore 
they are considered to have a memory ability.

A CNN layer

A CNN layer is composed of a series of filters whose parameters are 
learned from the training process. The filter used as a feature 
detector transforms the input data into a feature map, achieved by 
sliding the filter across the input data and performing a dot product 
of the filter with the same-sized input data. For DNA sequences, in 
the first CNN layer, filters could be considered as PWMs, each of 
which scans across the sequence, and calculate a nonlinear 
similarity score at each position. A CNN layer usually contains a set 
of filters to capture different patterns in the data.
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Transcription start site (TSS) 

The TSS refers to the first nucleobase of transcription initiation, as a 
region of the promoter. 

Position weight matrices (PWMs) 

PWMs are a type of commonly used probabilistic representation of 
motifs, which are derived from the nucleotide frequency of aligned 
sequences arranged at each position. 

The ResNet program (ResNet) 

The ResNet uses a strategy called skip connections that connect the 
output of one layer to further layers by skipping some layers 
between. The ResNet can alleviate the strain of vanishing gradients 
in deep network optimization and improve generalization accuracy. 

Transcriptional factor (TF) motif syntax-based design 

TF motif syntax-based design is based on a sufficient 
comprehension of how motif syntax relates to the sequence function. 
Motif syntax could be described as the number, order, position, 
orientation, and spacing of motifs. Motifs and their specific syntax 
form cis-regulatory codes, guiding de novo design with biological 
implications. 

Generative adversarial nets (GAN) 

GAN are a type of neural network-based generative models, which 
learn to automatically generate novel samples indistinguishable from 
samples in the training set, based on the minimax adversarial game 
between two neural networks.  

Introduction 
Since the turn of the century, genomics is a rising data- 
driven discipline [1], which aims to elucidate the func-
tion of all of the nucleotide sequences using high- 
throughput technologies such as genome sequencing 
and transcriptome profiling. Deep learning is a data- 
driven information technology that has made great suc-
cesses in the artificial intelligence community, including 
computer vision and natural-language processing (NLP)  
[2]. In plant biology, deep learning is starting to be used 
in a wide range of different fields, including plant 
breeding [3–7] and fruit taste [8]. Genomics and deep 
learning, both being data-driven, are a natural match. 
Indeed, their combined use has already achieved con-
siderable progresses in the fields of regulatory genomics  
[9–11], gene expression modeling [12–14], and cancer 
diagnosis [15] in the past decade. As such, we will focus 
our review on the combination of these approaches. 

Regulatory genomics refers to the study of functional 
noncoding DNA that contributes to the regulation of 
gene expression. The simplest units of regulatory 
genomics are transcriptional factor-binding site (TFBS) 
and cis-regulatory elements (CREs), which are often 
5–20-bp DNA fragments recognized by a specific tran-
scriptional factor (TF) protein [7]. In 2015, the pio-
neering work of DeepBind was the first successful deep 
learning application in genomics, and amazingly almost 

completely solved the long-standing problem of TFBS 
predictions [10]. Based on basic units of TFBS, larger 
genomic regions assembled by a combination of spaced 
TFBSs are called cis-regulatory modules, these include 
both gene-proximal promoters and distal enhancers [16]. 
Such elements are believed to act as master regulators of 
target gene expression and are naturally core objects of 
regulatory genomics [17]. Deep learning usually char-
acterizes promoters and enhancers by modeling their 
associated epigenomic signals, including chromatin ac-
cessibility and histone modifications [11,18]. 

A considerable number of elegant reviews have com-
prehensively demonstrated the fundamental network 
structures of deep learning, including fully connected 
neural networks (FCNN), convolutional neural networks 
(CNN), and recurrent neural networks, demonstrating 
how to apply these modeling approaches to solve reg-
ulatory genomics problems [1,4,9,19–21]. For example, 
the first successful case of DeepBind took short DNA 
fragments (varying lengths of 14–101 bp) as the inputs 
and employed their binding intensities as the outputs to 
learn adjustable parameters of filter matrix in the CNN 
layer and weight matrix in the FCNN layer [10]. How-
ever, two important research trends seem to be emerging 
in view of new advances in recent years: (i) accurate 
modeling of more complex input of very long regulatory 
DNA sequence, which requires more complex model 
architecture that needs to be assembled from modules or 
blocks [12,22]; (ii) increased attention for the biological 
interpretability of the models [23–26]. This would help 
to define critical nucleotide bases with regulatory effects, 
which could then meet the specific biological demand 
and are the ideal target of downstream bioengineering 
applications such as drug targets in humans [27] and 
breeding-by-editing in plants [4]. 

Here, we first review recent innovations of model ar-
chitecture on deep learning modeling methods in the 
field of regulatory genomics, and subsequently sum-
marize existing biological interpretability methods for 
the identification of CREs. Finally, we discuss how to 
employ deep learning models and interpretability 
methods as we move from identification to design of 
genomic regulatory elements. 

New trends of deep learning modeling of 
regulatory DNA: utilization of longer input 
sequences via modularization of model 
architecture 
Deep learning modeling on regulatory DNA was initially 
carried out by using short genomic fragments 
(100–500 bp) as input of a basic unit of TFBS [10]. It 
has, by now, been expanded to modeling longer genomic 
regions (up to 200 kb), which are long enough to include 
the most determinants of gene expression [12]. During 
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the transition to using longer sequences, researchers had 
to adopt model architecture that was appropriately 
adapting to input lengthy sequences. At the early stage, 
when the input genomic sequence is of 100–500-bp 
length, the task of learning and training is to capture the 
local features with spatially invariant patterns among 
these short sequences. This is the main advantage of the 
use of a CNN layer, an architecture that was validated 
and proven in the field of image classification [2]. 
Therefore, early deep learning tools, including Deep-
Bind [10] and DeepSEA [11], simply used a layer-based 
architecture, which in turn consists of a convolutional 
layer, a rectification layer, a pooling layer (the first three 
layers usually being referred to as a CNN block), and a 
fully connected layer (Figure 1a). The design principle 
behind this is that the convolutional layer can effectively 
detect local sequence features, whose noise is removed 
with the rectification layer; the pooling layer only re-
serves the most prominent features that will be used for 
classification or prediction with the last fully connected 
layer. 

Later studies focused on larger functional genomics re-
gions ranging from open-chromatin region with 600 bp of 
Basset [18] to gene expression of 10.5-kb region flanking 
transcription start sites (TSS) of Xpresso [28] and of 3 kb 
of maize gene expression prediction [3]. To model a 
kilobase-scale input sequence, the corresponding design 
started to adopt the modularization idea by stacking two  
[28] or three [18] CNN blocks before the final fully 
connected layer. Under this design, the first CNN layer 
represents the recognition of position weight matrices 
(PWMs) and subsequent CNN blocks consider the 
spatial distances and combinations between PWMs re-
cognized in the previous layer [18]. Models trained using 
kilobase-scale input sequences together with several 
CNN blocks had stronger predictability than short DNA 
fragments on more complex regulatory phenomena such 
as chromatin accessibility [18] and variant expression 
effects [28]. 

Understanding gene expression is the core objective of 
regulatory genomics, thus, accurate and robust predic-
tion of gene expression is the core task of deep learning 
in regulatory genomics. To this end, researchers need to 
model longer input sequences, which includes most 
determinants (not only gene-proximal promoters, but 
also gene-distal enhancers) affecting gene expression. 
This is especially relevant for large genomes such as 
human [18] and maize [13]. Indeed, recent studies ex-
tended their input sequence length from kilobase scale 
to hundred kilobase scale [12–14,22,29] (Table 1). 

To model such long sequences, one option is to stack 
more CNN blocks. Unfortunately, experiences from 
computer vision suggest that using more than 30 layers 
will lead to severe gradient-vanish problems. 

Furthermore, simply stacking CNN blocks does not 
guarantee an enlarged receptive field of hundred kilo-
base scale. To avoid the gradient-vanish problem, the 
ResNet program was proven to be successfully stacking 
more CNN blocks [29]. The enlarged receptive field 
problem can be improved by dilated convolution [14]. A 
successful approach therefore consists of combining 
ResNet with dilated convolution to create a novel design 
of ‘dilated residual blocks’, which theoretically can stack 
many blocks and solve both problems. Let us take Be-
senji2 [22] as an example to demonstrate its precise 
design (Figure 1a): to model DNA sequences with each 
length of 131 072 bp (=217), Besenji2 first adopts seven 
iterated CNN blocks to extract the relevant sequence 
motifs by reducing feature dimension to 1024 (=210) bins 
(Each bin represents a basic unit of 128-bp window, and 
each CNN block reduces a half-dimension with the max 
pooling layer of width of 2); it then applies eleven di-
lated residual blocks to model long-range interactions 
between the above 1024 bins. Besenji2 has improved 
gene expression prediction accuracy in human and 
mouse, and iterated CNN blocks combined with iterated 
dilated residual blocks have become a standard model 
architecture for modeling hundred kilobase-scale input 
sequences. Recently, the Enformer program [12] re-
placed the dilated residual block with a transformer 
block, which mainly uses multiple self-attention layers. 
With this modification, the authors successfully detect 
the relative position and coding of different words in 
NLP [30] as well as to effectively prioritize gene-distal 
enhancers [12]. For other possible approaches, we refer 
readers to a rich model resource of the Kipoi repository  
[31] (https://kipoi.org/), which is a community exchange 
platform that integrates a total of 2201 trained models for 
regulatory genomics from 35 research groups. 

Model interpretability is the next step 
Model interpretability refers to the prioritization of im-
portant features among all input features during pre-
diction [26] and it is essential in biological applications of 
deep learning [32]. Robust model interpretability in 
regulatory genomics is receiving more attention in recent 
years because it may help us to identify causal variants 
affecting TF binding [10] or chromatin accessibility [18], 
as well as can aid in the identification of gene-distal 
enhancers [12] or critical CREs affecting enhancer ac-
tivity [24]. Overall, interpretation strategies of deep 
learning in genomics can be summarized into three main 
categories: (i) perturbation-based interpretability, (ii) 
backpropagation-based interpretability, and (iii) atten-
tion mechanism-based interpretability. 

Identifying important bases with perturbation- 
based interpretability 
Perturbation-based interpretability quantifies the im-
portance of each base of an input sequence using the 
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strategy of making small perturbations in the input se-
quence, and then monitors the corresponding change of 
the output using the deep learning model described in 
the last section. A simple but widely used perturbation 
method is in silico mutagenesis (Figure 1b left panel), 
which mutates the current nucleotide into the other 
three nucleotides at each base and graphically demon-
strates the significant effects on the output via means of 
a mutation map [10,12–14,18]. In addition, an emerging 
perturbation method is in silico tiling deletion [24], 
which employs the deep learning model to simulate the 
tiling deletion of a given enhancer or a gene promoter. 
This approach is beginning to become popular in plants, 
for example, in gene promoters of maize FCP1 gene [33] 
and rice IPA1 gene [34]. Different from in silico muta-
genesis, in silico tiling deletion (Figure 1b middle panel) 
removes a small sliding window (10 bp in DeepSTARR) 
with an overlapping stride (5 bp) from the input se-
quence (250 bp), and then monitors the significant 
changes in important bases using a variation curve or an 
overlapping histogram [24]. 

Identification of critical cis-regulatory 
elements with base importance score via 
backpropagation-based interpretability 
Backpropagation-based interpretability quantifies the 
importance of each base by means of a base contribution 
score (Figure 1b right panel), which represents the 
contribution this base makes to the difference prediction 

value. A typical backpropagation-based interpretability 
method is DeepLIFT [32], which first uses the deep 
learning model to compute the prediction values of the 
given input sequence and the reference sequence, re-
spectively, and then decomposes the differences be-
tween them into contribution scores of all bases, by 
back-propagating the contributions of all neurons of the 
network to every feature of the input. Recent publica-
tions all chose “base contribution scores” to highlight 
base-resolution CREs that are usually visualized as high- 
colored characters [12,23,24]. A limitation of DeepLIFT 
is that its current version does not support the ResNet 
module, thus rendering it inapplicable to dilated residual 
block designs. An alternative strategy is to use a gra-
dient-based method such as gradient×input or attention 
weight of transformer [12]. 

Discovering the transcriptional factor motif 
syntax with transcriptional factor motif 
analysis 
To investigate the biological implications of several 
successive bases with high base contribution scores, the 
new motif discovery algorithm — TF-MoDISco [35] was 
developed. This tool can identify high-quality, non-
redundant TF motifs. It takes base contribution scores 
as input and identifies DNA segments with substantial 
contributions (significantly higher than the background 
distribution of scores). As a result, TF-MoDISco will 
provide as output the nonredundant and known TF [36] 

Table 1 

Input sequence length, model architecture, and model interpretability method of known deep learning tools.      

Model name Input sequence length Model architecture Model interpretability method  

DeepBind Varying lengths of 
14–101 bp 

A CNN block In silico mutagenesis 

DeepSEA 1kbp Three CNN layers In silico mutagenesis 
Basset 600 bp Three CNN blocks In silico mutagenesis 
ExPecto 40kbp Six CNN blocks In silico mutagenesis 
Basenji 131kbp Four CNN blocks + seven dilated CNN Saliency maps 
Basenji2 131kbp Seven CNN blocks+eleven dilated residual 

blocks 
In silico mutagenesis 

Xpresso 10.5kbp Two CNN blocks None 
ExpResNet 95kbp Four residual units None 
Enformer 200kbp Seven CNN blocks+eleven transformer blocks Gradient × input or attention weight 
BPNet 1kbp Nine dilated residual blocks DeepLIFT contribution score 
DeepSTARR 250 bp Four CNN blocks DeepLIFT contribution score and in silico tiling 

deletion   

The general pipeline of deep learning applications in regulatory genomics: from model architecture, to model interpretability, to design regulatory DNA. 
(a) The trend of development of input sequence length and model architecture. The input sequence length has changed from kilobase scale to 
hundred kilo-based scale. And the corresponding model architecture has changed from layer-based architecture to modularization architecture. (b) 
We use an example of a rice gene promoter of IPA1 to demonstrate two categories of model interpretability methods: perturbation-based 
interpretability and backpropagation-based interpretability. Perturbation-based methods include in silico mutagenesis and in silico tilling deletion. A 
typical method of backpropagation-based interpretability is DeepLIFT, which is employed to compute base contribution score. (c) The design strategy 
can be divided into two categories: knowledge-guided design and GAN-based design. Knowledge-guided design used the learned TF motif syntax to 
give rational designs. GAN-based design used a data-driven strategy to generate functional regulatory DNA from fully random sequences.   
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motifs enriched within the whole input sequences. One 
can thereby easily locate the position of each motif by 
scanning each input sequence with the above PWMs 
and standard motif tools such as FIMO [37], and then 
perform downstream syntax analysis. 

Finally, there are some other interpretability tools or 
modifications on the above-mentioned tools that we 
would like to discuss. One of these is SHAP [38] 
(SHapley Additive exPlanations), another interpret-
ability tool, the idea of which is to obtain interpretability 
by using a simpler explanation model with the additive 
feature attribution property to approximate the original 
model. SHAP claims that it outperforms DeepLIFT in 
some computer vision problems. However, there are no 
SHAP-based genomic applications to date, probably due 
to its huge computational burden. Another two technical 
modifications are worthy of note: (i) the use of ex-
ponential activation to first-layer filters, which may lead 
to interpretable and robust representations of motifs  
[39]; and (ii) the directed correction of gradient×input, 
which can lead to small, but significant improvements in 
gradient-based contribution scores [40]. 

Designing synthetic cis-regulatory elements: 
knowledge-guided design and generative 
adversarial-based design 
One goal of future biological studies is to transition from 
understanding life to transforming life. For regulatory 
genomics, it would be interesting to design novel and 
new-to-nature CREs, which would go beyond the se-
quence space limitation of existing organisms. Below, we 
list a number of recent advances on the design and en-
gineering of regulatory DNA, which can be broadly clas-
sified into two categories: (i) knowledge-guided design 
and (ii) generative adversarial-based design (Figure. 1c). 

A typical representative of knowledge-guided design is 
DeepSTARR, which first built a CNN model for accu-
rate enhancer activity prediction, and subsequently dis-
covered TF motif syntax of combination and spacing 
(Figure 1c left panel) using the base importance score of 
DeepLIFT, and finally employed the learned syntax 
knowledge to design a more optimal enhancer with 
maximal activity [24]. In another example, Jores et al.  
[41] created synthetic promoters, from native plant core 
promoters, whose promoter strengths are comparable or 
even exceed that of the strong 35S minimal promoter, 
using the deep learning-based strategy of in silico evo-
lution. More recent design ideas on regulatory DNA 
suggest that fitness should be taken into account [42]. 
This would address fundamental questions in regulatory 
evolution. The study found that a robust in silico evo-
lution is not a rapid evolution toward expression ex-
tremes but rather must satisfy the two opposing 
expression requirements of adaptation and complexity. 

Unlike TF motif syntax-based design from learned 
biological knowledge, generative adversarial nets 
(GAN)-based design is a more data-driven strategy, 
which simultaneously constructs two models: a generator 
and a discriminator. The generator aims to generate se-
quences as outputs, whose fidelities are then measured 
by the discriminator model, which is pretrained with 
natural sequences [43]. The training process of the 
whole GAN model is the adversarial process between 
generator and discriminator [19,44] (Figure 1c right 
panel). For example, Wang et al. implemented a GAN- 
based design of 50-bp E. coli promoters, most of which 
were found to have low sequence similarity with natural 
sequences and were experimentally validated to be 
functional [45]. 

An example of the maize FCP1 gene for 
demonstrating the whole workflow 
Finally, we use an example of the maize FCP1 gene to 
demonstrate the whole workflow of this review (Figure 2). 
Maize FCP1 gene acts in the CLAVATA (CLV)-WU-
SCHEL (WUS) feedback pathway, and mutations of 
FCP1 might lead to enlarged inflorescence stems and 
fasciated ears in maize [33]. The details can be found in 
the figure legend of Figure 2. 

Conclusions and future perspectives 
Deep learning applications in regulatory genomics have 
undergone a complete volte face from the early goal of 
improving model predictability to the current goal of 
balancing predictability and interpretability. 
Consequently, there have been remarkable advances in 
the past few years with this change in perspective, which 
we feel is completely changing ‘the rules of the game’. 
Future studies should focus on two aspects: (i) model 
interpretability should be further improved because this 
will help us performing more precise identification; (ii) 
designing synthetic CREs, which is a promising route for 
future crop improvement. However, it is important to 
note that this field is in its infancy, and as such, more 
novel strategies and methods to design synthetic reg-
ulatory DNA, capable of implementing any desired gene 
expression, will be required. 
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