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Abstract

Background: In maize hybrid breeding, complementary pools of parental lines with
reshuffled genetic variants are established for superior hybrid performance. To
comprehensively decipher the genetics of heterosis, we present a new design of
multiple linked F1 populations with 42,840 F1 maize hybrids, generated by crossing a
synthetic population of 1428 maternal lines with 30 elite testers from diverse genetic
backgrounds and phenotyped for agronomic traits.

Results: We show that, although yield heterosis is correlated with the widespread,
minor-effect epistatic QTLs, it may be resulted from a few major-effect additive and
dominant QTLs in early developmental stages. Floral transition is probably one
critical stage for heterosis formation, in which epistatic QTLs are activated by paternal
contributions of alleles that counteract the recessive, deleterious maternal alleles.
These deleterious alleles, while rare, epistatically repress other favorable QTLs. We
demonstrate this with one example, showing that Brachytic2 represses the Ubiquitin3
locus in the maternal lines; in hybrids, the paternal allele alleviates this repression,
which in turn recovers the height of the plant and enhances the weight of the ear.
Finally, we propose a molecular design breeding by manipulating key genes
underlying the transition from vegetative-to-reproductive growth.

Conclusion: The new population design is used to dissect the genetic basis of
heterosis which accelerates maize molecular design breeding by diminishing
deleterious epistatic interactions.

Keywords: Maize, Heterosis, Genomic selection, Floral transition, Molecular design
breeding
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Background
Crop breeding began with the initial domestication of wild ancestors to generate phe-

notypes suited for human use [1]. Dozens of domestication-related genes have been

characterized and contribute to our understanding of the genetic basis of crop domesti-

cation [2, 3]. DNA sequences targeted during domestication events exhibit significantly

reduced nucleotide diversity due to artificial selection, and beneficial variants are now

mostly fixed in landraces and modern germplasm [4]. Crop improvement involves the

selection of additional sets of genes, and useful variants at these sequences also accu-

mulated over time in improved germplasm [5, 6]. Various breeding goals and adapta-

tion to diverse environments have caused a widely differing distribution of alleles

across populations with more subtle effects on phenotypic morphology, as compared to

variation in domestication-related alleles [7]. While this rich pool of potential genetic

variants may further improve future crop yield, their minor effects on desirable traits

complicate their identification and isolation in the analysis of small populations.

Approximately three percent of all maize genes were subjected to selection during

domestication and improvement [8, 9]. The incorporation of useful alleles of these

genes in breeding schemes is generally implemented via crossing between individuals

to allow the accumulation and fine-tuning of phenotypic alterations that result from

DNA recombination and the reshuffling of causal variants [10]. Thus, most artificial

selection has essentially worked to reshape gene networks, rather than on single genes

[11]. Although we generally define domestication and improvement as distinct phe-

nomena, the genes and variants influencing each have been — and are still being — co-

operatively selected and adopted to achieve trait improvement. Breeding success would

benefit from a better understanding of this process, which remains elusive to date.

The improvement of quantitative traits such as flowering time, plant stature, grain

yield, environmental adaptation, and biotic and abiotic stress resistance depends on the

selection of biological interactions between multiple genes (polygenic interactions) [12].

To achieve the desired goal for a target trait, breeders develop populations by crossing

a panel of breeding materials to generate novel combinations of favorable alleles and di-

versified polygenic interactions that can be selected for optimal traits [13, 14]. Most

genes encoding polygenic traits contribute subtle effects to the overall quantitative trait

expression, as the reshaped gene-interaction networks involve dozens to hundreds of

genes. For this reason, genotype-to-phenotype (G2P) prediction or genomic selection

(GS) models using whole-genome variations have been effective solutions to predict

hybrid performance for plant breeding [15–19].

Maize (Zea mays) was one of the earliest crops to benefit from the power of heterosis

by breeding filial one (F1) hybrids exhibiting superior vigor for plant growth and grain

yield. The mystery of heterosis has been explored for over a century, but the underlying

mechanism remains insufficiently understood [20]. One of the hypotheses for heterosis

is the “dominance” model proposing that hybrid vigor of F1s is the result of dominance

complementation of many recessive, slightly deleterious alleles at different loci in the

parental genomes [21, 22]. This hypothesis was further validated by Yang et al., in

which genome-wide identification of deleterious mutations were identified and proved

that dominance complementation of deleterious alleles contributed to the formation of

heterosis [23]. The second hypothesis for heterosis is overdominance, that the heterozy-

gosity at individual locus causes the superior phenotype compared to either homozygous
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states [24]. There are several genes supporting overdominance in crops [13, 25,

26]. The development of molecular marker and next-generation sequencing (NGS)

technologies has allowed large genomic-scale mapping studies in all major crops.

These analyses, based on segregating populations very often derived only from two

parents, have empowered the dissection of the genetic architecture of heterosis,

mostly focusing on grain yield [13, 27–32].

The occurrence and strength of heterosis varies greatly, depending on the germplasm

origins of the parental lines; thus, the genetic diversity of a population created with only

two parents will never be sufficient to identify all heterotic quantitative trait loci

(QTLs). Additional limitations of bi-parental populations further restrict the effective

detection of epistatic QTLs. For example, each segregating F2 population must be very

large to ensure sufficient statistical power. Furthermore, any two interacting loci

involved in heterosis must be segregating in the F2 population, or epistasis will not be

detected. These two limitations are the major reasons why many previous studies of

heterosis underestimated the role that epistasis plays [28, 33].

Here, we present a new genetic design that overcomes these limitations and analyzes

multiple linked F1 populations. It was created by crossing inbred lines, developed as a

synthetic population, with inbred lines typical of diverse heterotic groups from around

the world. This design may allow the comprehensive dissection of heterotic QTLs and

associated effects. Identification of heterosis-determining genes may refine our under-

standing of the mechanism behind heterosis formation. This new mechanistic know-

ledge may in turn accelerate the process of creating and fixing new heterotic patterns

between different pools of germplasm, reducing genetic vulnerability and ultimately

enhancing yield in maize improvement.

We constructed 30 F1 populations by crossing 1428 previously reported inbred lines

from the CUBIC (Complete-diallel plus Unbalanced Breeding-derived Inter-Cross) syn-

thetic population as a maternal pool [34] with 30 paternal testers from diverse heterotic

groups. We performed genome-wide association studies (GWAS) on all populations to

identify heterosis and trait-associated genes involved in maize improvement. Inter-

rogation of the 42,840 F1 combinations uncovered the critical roles played by poly-

genic interactions and provided the framework to propose a theoretical model of

the gene-regulation networks at work during floral transition. Based on this model,

we used targeted genes and their associated effective variants to demonstrate the

successful implementation of molecular design breeding (MDB) to facilitate selec-

tion of optimal genotypic combinations to fine-tune desired phenotypes. With the

integration of G2P, GWAS and MDB on an actual breeding population, our work

presents an exemplary solution to apply big data-driven decision-making strategies

to target breeding for crop improvement (Fig. 1a).

Results
Superior heterosis performance of the thirty F1 populations

We employed the North Carolina II (NC-II) design to construct thirty inter-related F1
populations by crossing 1428 maternal lines from the CUBIC population [34] with

thirty paternal tester lines (Additional file 1). While the maternal pool represents locally

adapted alleles for China, the paternal testers encompass a broad range of advantageous
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Fig. 1 Genetic design of the thirty F1 hybrid populations. a Flowchart illustrating the integration of
genotype to phenotype (G2P), genome-wide association studies (GWAS), and molecular design breeding
(MDB) to achieve big data-assisted targeted breeding. b Schematic illustration of the North Carolina-II
design used to generate the 42,840 F1 combinations by crossing 1428 maternal lines with 30 paternal
testers. The training set is composed of 8652 hybrids with field-measured phenotypes (dark gray
background). The remaining 34,188 hybrids constitute the candidate set whose phenotypes were predicted
with the G2P model. c Principle component analysis (PCA) diagram of the thirty F1 hybrid populations
showing strong population stratification. d Effect of phenotypic stratification across the thirty F1 hybrid
populations, exemplified here with days to tasseling (DTT), before (left) and after (right) normalizing
absolute trait values to z-scores within each F1 population. e Strong heterosis performance of the Zheng58
and Jing724 F1 hybrids compared to their parental inbred lines for the three traits under study
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alleles from improved foreign germplasm to maximize genetic complementation in the

F1 hybrids (see the “Methods” section). Setting up all crosses between the 1428 and 30

parental lines would generate 42,840 F1 combinations but would also constitute a major

phenotyping bottleneck by obtaining trait data in the field. Considering the clear pedi-

gree of the CUBIC lines, we hypothesized that G2P prediction may be performed to

infer missing F1 phenotypes, making it unnecessary to plant all F1 populations. We

planted a training dataset consisting of 8652 F1 hybrids in five locations and measured

three major traits—days to tasseling (DTT), plant height (PH), and ear weight

(EW)—on 17 individual plants for each hybrid. We also used the commercial hy-

brid ZhengDan958 as a control and planted it once for every 50 rows to adjust for

phenotypic heterogeneity across fields. We then used the measured phenotypes

from the 8652 F1s to train the G2P model and predict the phenotypes of the

remaining 34,188 F1 hybrids.

To ensure full coverage of all paternal and maternal genotypes, the training set

included two complete F1 populations consisting of 2856 hybrids between the 1428

maternal lines and the two paternal tester lines Zheng58 and Jing724, which have been

widely used in Chinese commercial breeding programs. The remaining 28 F1 popula-

tions were represented by 5796 F1 hybrids between a subset of 207 maternal lines and

the other 28 paternal testers (Fig. 1b). Phylogenetic analysis of the 1458 maternal and

paternal parents showed an even distribution of the 207 maternal training lines, inter-

spersed with the 1221 predicted maternal lines, illustrating the unbiased representation

of the training set (Additional file 2: Figure S1a). We recreated the genotypes for all 42,

840 F1 combinations from the over 4.5 million high-quality single nucleotide polymor-

phisms (SNPs) obtained from whole-genome resequencing of the 1458 parental lines

(see the “Methods” section). Principle component analysis (PCA) based on the F1 geno-

types showed stratified clustering patterns, suggesting that population structure is a

critical factor to consider in both G2P predictions and GWAS analyses (Fig. 1c). We

also observed paternally oriented stratification in F1 phenotypes (Fig. 1d, left panel).

We transformed the absolute phenotypic values to relative rankings using the z-score

algorithm (Fig. 1d, right panel; Additional file 2: Figure S1b; see the “Methods” section).

A comparison of parental and F1 phenotypes revealed heterosis for the three traits

across the thirty F1 populations. For DTT, 28 F1 populations exhibited earlier flowering

times than their corresponding parents, with the exception of the two tropical testers,

indicating that heterosis for DTT is expressed as early flowering (Fig. 1e; Additional file

2: Figure S2). In the case of the PH and EW traits, all F1 phenotypic values were two to

three times higher than the parental lines and exhibited strong mid-parent heterosis

(MPH). Among the 8652 F1 hybrids with measured phenotypes, 554 hybrids (or 6.4%)

showed earlier DTT, shorter PH, and higher EW when compared to the commercial

control variety ZhengDan958, illustrating the potential of our F1 hybrid population for

the breeding of early-flowering, high-yielding, and compact cultivars.

G2P prediction enhances GWAS detection power

We used the genomic best linear unbiased prediction (gBLUP) model to infer the

phenotypes of the 34,188 F1 combinations we did not phenotype in the field (see the

“Methods” section). Because the parental phenotypes exhibited correlations with F1
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phenotypes (Additional file 2: Figure S3), they were used as fixed effects in gBLUP to

reduce the influence stemming from population stratification. We evaluated the gBLUP

model by partitioning the training and testing samples in two ways. First, to evaluate

the influence of population stratification, we used 27 of the 28 F1 hybrid populations

(corresponding to 5589 F1 samples, or 207 maternal lines × 27 parental lines) for train-

ing purposes, while we used the remaining 207 samples (207 maternal lines × 1 missing

parental line) for testing. We repeated this procedure 28 times to derive predictability,

measured as the Pearson correlation coefficient (r) between measured and predicted

phenotypes for each F1 population. The average predictabilities of the 28 F1 hybrid pop-

ulations for the three traits were 0.76 (DTT), 0.81 (PH), and 0.66 (EW); for the mid-

parent heterosis, estimates were 0.61 (MPH.DTT), 0.805 (MPH.PH), and 0.89

(MPH.EW) (Fig. 2a; Additional file 3). The predictabilities across the 28 sets varied as a

function of their heterotic groups, with the lowest predictabilities seen for the tropical

and waxy groups, and the highest predictabilities for the X-population and Reid groups

(Fig. 2a).

The second model testing method was designed to evaluate the predictability of the

Zheng58 and Jing724 hybrids. We used the 6210 (207 maternal lines × 30 paternal

lines) hybrids plus the 1221 Zheng58 hybrids as the training model to predict the per-

formance of the 1221 Jing724 hybrids. We then repeated the same exercise, this time

using the Jing724 hybrids alongside the 6210 hybrids in a new training set to predict

the 1221 Zheng58 hybrids. When parental phenotypes were considered as fixed effects

in the gBLUP model, predictabilities were 0.695 (DTT), 0.67 (PH), and 0.44 (EW)

for Jing724 hybrids and 0.70 (DTT), 0.72 (PH), and 0.47 (EW) for Zheng58 hybrids

(Fig. 2b).

The complete determination of 42,840 F1 phenotypes (both measured and inferred)

enlarged the effective population dataset fivefold, which may greatly enhance GWAS

detection power. Indeed, GWAS signals significantly rose in GWAS analyses performed

on the full dataset, which includes all 1428 maternal lines across the thirty F1 popula-

tions, when compared to the training set of 207 maternal lines (Additional file 4). As

illustrated by the Zheng58 F1 population, GWAS for DTT on the 207 hybrid subset

only detected a peak on chromosome 3 at the MADS69 locus, but GWAS with all 1428

hybrids (combining measured DTT from 207 F1s and predicted DTT from 1221 F1s)

detected an additional peak on chromosome 8 at the ZEA CENTRORADIALIS 8

(ZCN8) locus (Fig. 2c). The MADS69-RAP2.7-ZCN8 pathway is the core flowering acti-

vation module in maize [35]: the detection of both MADS69 and ZCN8 peaks confirms

the increased GWAS power in the larger hybrid set. The GWAS signal of the MADS69

peak using 1428 predicted DTT values (p-value = 1e− 12) was weaker than when using

measured DTT values (p-value = 1e− 16) on the same samples, but was nevertheless

one order of magnitude higher than that obtained with the subset of 207 samples.

GWAS on both measured and predicted MPH.DTT detected a peak at the MADS15/31

locus, a pair of tandemly duplicated MADS-box transcription factor genes.

We detected an unknown PH QTL on chromosome 6 in GWAS of the combined

1428 hybrids for both measured and predicted PH, although this peak was absent in

the subset of 207 hybrids. We detected a peak at the Brachytic2 (BR2) [36] locus in the

full 1428 hybrid set for both measured and predicted MPH.PH. However, a peak at the

start of chromosome 2 (peak SNP: chr2.s_537241) was only detected in the full 1428
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Fig. 2 (See legend on next page.)
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hybrid set when using measured MPH.PH values and was absent when using predicted

MPH.PH values, most likely reflecting the extremely low minor allele frequency (MAF

= 0.023) of the peak SNP among the 1428 hybrids. These results demonstrate that G2P

prediction is an effective strategy that greatly reduces field labor and phenotyping ex-

pense without sacrificing GWAS power.

Quantitative evaluation of GWAS accuracy with simulation analysis

When using predicted phenotypes for GWAS in the enlarged population containing

1428 samples, the risk of false discovery of excessive unrelated QTLs must be excluded.

To quantitatively evaluate the GWAS accuracy, we performed a series of simulation

analyses to infer the false discovery rate (FDR) and detection power (DP) under 36 cir-

cumstances of different prediction accuracy and population size. These analyses were

based on simulating a polygenic trait determined by 20 spike-in QTNs (quantitative

trait nucleotides) that contribute major, moderate, and minor effects to the phenotype

(see the “Methods” section).

We first evaluated whether predicted phenotypes may cause excessive false discovery

of QTNs that do not belong to the 20 spike-in QTNs, by defining the FDR using the

equation FDR ¼ N1
.
ðN1 þ N0Þ where N1 is the number of false QTNs and N0 is the

number of spike-in QTNs. When directly using the simulated observed phenotypes for

GWAS without considering prediction error (r2 = 1.0), FDR still existed and increased

with the increment of population size (Fig. 2d). When different levels of prediction

errors (r2 = 0.8, 0.6, 0.4, 0.2, 0.1) were considered, FDR was not increased, rather

decreased along with the decreased prediction accuracy. This pattern indicated that dis-

covery of false-positive QTNs may always occur even if observed phenotypes were used

for GWAS; on the contrary, inaccuracy in the predicted phenotypes may not cause the

discovery of more false-positive QTNs compared to the use of observed phenotypes for

GWAS. The possible explanation for this scenario is that inaccuracy in the predicted

phenotypes may cause a dramatic decrease of the number of significant SNPs, which

lowered the total amount of detected QTNs (Additional file 2: Figure S4). Thus, we

(See figure on previous page.)
Fig. 2 Genotype-to-phenotype (G2P) prediction enhances GWAS power. a Evaluation of the G2P precision using
the first prediction scheme of 207 × 27 hybrids as training samples versus the remaining 207 hybrids as testing
samples. The red, yellow, and green color scale represents the correlation coefficient (r) between measured and
predicted phenotypes from high, moderate, to low r values, respectively. b Evaluation of G2P precision using the
second prediction scheme in which 207 × 30 + 1221 Zheng58 F1 hybrids were used as the training set to
predict 1221 Jing724 F1 hybrids (left panel), and vice versa (right panel). The accuracy of G2P prediction when
including parental phenotypes as fixed effects to correct for population stratification was higher than G2P
prediction without parental phenotypes. c Comparison of GWAS signals, illustrated as Manhattan plots, in the
Zheng58 F1 population for DTT and mid-parent heterosis of DTT (MPH.DTT; left panel), plant height (PH), and
mid-parent heterosis of PH (MPH.PH; right panel) using 207 (“207 measured”) and 1428 samples with measured
phenotypes (“1,428 measured”), and 1428 samples with 207 measured plus 1221 predicted phenotypes (“1,428
predicted”). d False discovery rates (FDRs) of GWAS detection of the 20 spike-in QTNs under the circumstances of
different prediction accuracy and population size. The GWAS detection for false positives is declared at the
significant threshold of p-value ≤ 1e− 05, based on adjusted Bonferroni correction. e Detection power of the 20
spike-in QTNs with major, moderate, and minor effects by GWAS in the population of 1428 samples using the
simulated phenotypes at the six levels of prediction accuracy. The GWAS detection of true positives is declared
by a significant threshold based on a series of type I errors (α) from 0.05 to 0.95
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may conclude that inaccuracy in the predicted phenotypes will not introduce excessive

false-positive QTNs.

We then evaluated the influence of the phenotype prediction accuracy on the detec-

tion power (DP) for GWAS. In this analysis, we used a permutation-based method to

define a significance threshold (α = 0.05) to detect spike-in QTNs by shuffling the simu-

lated observed phenotypes for 1000 times. The DP was defined as the proportion of

successful detections out of the 500 times of GWAS for each QTN, and the averaged

DP of all the 20 spike-in QTNs was computed to represent the overall DP under each

circumstance of prediction accuracy and population size. DP of GWAS was determined

by all of the three factors including population size, QTN effects and prediction accur-

acy (Additional file 2: Figure S5). When the type-I error rate was controlled at α = 0.05

and the accuracy of predicted phenotype reached r2 = 0.8, major and moderate QTNs

had about 87.5 and 75.0% probability to be detected in the population containing all of

the 1428 samples, respectively; even though the accuracy dropped to r2 = 0.6, the prob-

abilities of detecting major and moderate QTNs were still about 75.0 and 50.0% re-

spectively (Fig. 2e). When only 207 samples were used for GWAS, we only had about

25.0% probability to discover major and moderate QTNs.

Therefore, the above simulation analysis indicated that detection power of GWAS

can be greatly improved due to enlarged population size, since genomic variants

with small genetic effects are mostly missed in the small population of 207 sam-

ples. At the same time, utilization of prediction phenotypes with relatively high

prediction accuracy may not cause excessive false discovery of QTLs unrelated to a

studied trait, such as the DTT and PH traits with high heritability determined by a

small number of major-effect QTLs. This conclusion can be further confirmed

using an alternative way of simulation analysis (Additional file 2: Figure S6; see the

“Methods” section).

Identification of heterotic QTLs across thirty F1 populations

Comparing the GWAS signals between maternal and F1 populations facilitates the dis-

section of heterotic QTLs and the genes associated with the three traits. As exemplified

by one F1 population derived from crosses between all maternal lines and the MG1544

tester, we detected the ZCN8 and RAP2.7 peaks as significant associations in both ma-

ternal and F1 populations. However, the MADS69 peak was vastly more significant in

the F1 population than in the maternal population (Fig. 3a). We identified several peaks

at previously cloned (names in uppercase) and putative (names in lowercase) flowering

time genes in the maternal population, including EARLY HEADING DATE 1

(ZmEHD1), MADS1, MADS15/31, ZCN4, CCAAT-HAP3-transcription factor 32

(ca3p2, also called ZmNF-YB3), and myb74. Several genes showed weaker GWAS peaks

when using the F1 phenotypes, for example, ca3p2, MADS15/31, and DTT-7 (an un-

known peak on chromosome 7), although they rose above the significance threshold

when using MPH.DTT for GWAS (Fig. 3a, bottom panel).

We detected 8 QTLs for DTT in the maternal population, 24 QTLs in the F1 hybrid

population, and 23 QTLs when using the mid-parent heterosis values from the F1 hy-

brid population (Additional file 5). The eight major flowering time QTLs identified in

the maternal population were all detected using either DTT or MPH.DTT values in the

Xiao et al. Genome Biology          (2021) 22:148 Page 9 of 29



Fig. 3 (See legend on next page.)
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F1 population as well (Fig. 3b; see the “Methods” section). Moreover, the 24 DTT QTLs

and 23 MPH.DTT QTLs are mostly non-overlapping, with the exception of the wide

peak at ZCN8 and RAP2.7 (which we will refer to as ZCN8/RAP2.7). Of the 47 QTLs

(24 for DTT and 23 for MPH.DTT) in F1 hybrids, we detected MADS69 and ZCN8/

RAP2.7 across all thirty populations, while the other QTLs peaks at the MADS15/31,

ca3p2, MADS1, DTT-7, myb74, and ZCN4 loci were detected 29, 23, 22, 21, 9, and 8

times, respectively, with moderate signals. In a long genomic region spanning from ~

75 to ~ 88 Mbp on chromosome 8 upstream the ZCN8/RAP2.7 QTLs (~ 123

Mbp), we identified a series of fragmented QTLs for MPH.DTT in 22 F1 popula-

tions, although this region does not contain previously reported flowering time

genes (Fig. 3b and Additional file 5).

GWAS for PH in the maternal population detected two significant peaks. One

was associated with the BR2 locus (peak SNP: chr1.s_201665854), the causal SNP

being a rare allele derived from inbred Zong3 [36]. The other peak mapped to the

BRASSINOSTEROID-DEFICIENT DWARF 1 (BRD1) gene (peak SNP: chr1.s_

248796560) [37, 38] (Fig. 3c). In the F1 population, we observed an additional peak

on chromosome 6 (peak SNP: chr6.s_95877243), overlapping with the ubiquitin3

(ubi3) gene previously mapped in GWAS studies for plant and ear height [39]. The

height of the BR2 peak associated with PH greatly diminished in the F1 population,

but we did detect this QTL when using MPH.PH phenotypic values. The distinct

GWAS signals for the BR2 and BRD1 genes for PH and MPH.PH suggests distinct

genetic effects underlying heterosis of PH. Moreover, we identified 18 additional

QTLs of moderate significance for PH and 14 for MPH.PH multiple times across

the thirty F1 populations (Fig. 3d; Additional file 5).

Only a few major QTLs were significantly associated with EW in both maternal and

F1 populations. We could not identify clear underlying candidate genes within these

QTL regions. Three QTLs with moderate signals were detected in MPH.EW, suggestive

of the strong heterosis controlling the EW trait (Fig. 3e). Relaxing our significance cri-

teria when calling a QTL from GWAS only added four EW-related QTLs in the mater-

nal population, but added 48 and 15 in the GWAS results for EW and MPH.EW

phenotypes from all F1 populations, respectively (Fig. 3f; Additional file 5).

(See figure on previous page.)
Fig. 3 Detection of heterotic QTLs by GWAS across thirty F1 populations. a Comparison of the GWAS signals,
illustrated as Manhattan plots, for DTT in the maternal population, and for DTT and mid-parent heterosis of DTT
(MPH.DTT) in the MG1544 F1 population. The three dashed lines colored in red, green, and blue represent three
significance thresholds with p-value = 2.2e− 07, 1e− 06, and 1e− 05, respectively. b Summary of QTLs for DTT
(red) and MPH.DTT (green) detected in each F1 population and merged QTLs from the thirty F1 populations,
compared to the QTLs in the maternal population (blue). The three dashed lines colored in red, green, and blue
represent three significance thresholds with p-value = 2.2e− 07, 1e− 06, and 1e− 05, respectively. c Comparison
of the GWAS signals, illustrated as Manhattan plots, for plant height (PH) and MPH.PH detected in the MG1544
F1 population. The three dashed lines colored in red, green, and blue represent three significance thresholds
with p-value = 2.2e− 07, 1e− 06, and 1e− 05, respectively. d Summary of QTLs for PH (red) and MPH.PH (green)
detected in each F1 population and merged QTLs across the thirty F1 populations, compared to the QTLs in the
maternal population (blue). e Comparison of the GWAS signals, illustrated as Manhattan plots, for ear weight
(EW) and MPH.EW detected in the MG1544 F1 population. The three dashed lines colored in red, green, and
blue represent three significance thresholds with p-value = 2.2e− 07, 1e− 06, and 1e− 05, respectively. f
Summary of QTLs for EW (red) and MPH.EW (green) across the thirty F1 populations, compared to the QTLs in
the maternal population (blue)
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Forms of genetic effects implied by the differential GWAS signals across maternal and F1
populations

Comparing GWAS signals across maternal and F1 populations and derived F1 MPH

calculations is a straightforward way to infer genetic effects underlying the QTLs con-

tributing to heterosis. Summing the GWAS signals across the thirty F1 populations

identified 166 QTLs for the three traits (Additional file 6), which we categorized into

three QTL classes with additive, dominant, or epistatic effects according to the scenar-

ios (Fig. 4a, b). The first class includes QTLs (exemplified by Gene A) detected in both

maternal and F1 populations, suggesting additive effects as the maternal and paternal

alleles equally contribute to F1 phenotypes. The second class includes dominant QTLs

(exemplified by Gene B) detected in the maternal population but not in the F1 popula-

tions, that are caused by dominance complementation of the paternal allele against the

Fig. 4 Schematic illustration of the inference of additive, dominant, and epistatic QTLs. a Schematic illustration
of the inference of additive and dominant QTLs represented by two genes, Gene A and Gene B, respectively,
based on the differential patterns of GWAS signals across maternal and F1 populations, and the MPH of F1
hybrids. Strong (uppercase letter) and weak (lowercase letter) genotypes are defined by the corresponding
strong and weak phenotype of the maternal lines, respectively. The paternal genome always provides a strong
allele, marked in red. b Schematic illustration of the inference of epistatic QTLs represented by two genes, Gene
C and Gene D, that are epistatically repressed by unknown Gene X in maternal genomes. When the maternal
Gene x allele is combined with the dominant X allele from the paternal genome, Gene C and Gene D are
activated and exhibit additive and dominant effects, respectively. D × A and D × D represent the epistatic
effects of dominant by additive and dominant by dominant interactions, respectively. c A putative model for
the interpretation of the regulatory interactions between Genes C and D, and Gene X. In the maternal genome,
Gene X with homozygous, recessive alleles represses the transcription of Genes C and D (left panel). In the F1
hybrid, the dominant X allele from the paternal genome complements the recessive x allele of Gene X, and the
repressive effect on Gene C and D is relieved. Then, transcription of Gene C and D is activated with different
expression dosages based on their additive and dominant effects
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recessive maternal allele in F1 hybrids. QTLs with complete dominance effects can be

also detected by GWAS on the derived F1 MPH values, but additive QTLs are

undetectable (Fig. 4a, rightmost panel).

The third class includes QTLs with effects that differ from the expected action from

a single gene, as exemplified by Genes C and D (Fig. 4b). Gene C has an additive effect,

and gene D has a dominant effect, but these are undetectable in the maternal popula-

tion and only detected in the F1 populations. The unexpected behavior of this class of

QTLs in the maternal population is most likely epistatically repressed by another un-

identified QTL, as exemplified by the Gene X executing recessive, repressive effects on

Genes C and D (Fig. 4b). Gene X is undetectable by GWAS in the maternal population

due to extremely low frequency (MAF << 0.05) or absence of the activating allele, when

the population size is insufficient to detect allele segregation. In F1 hybrids, the activat-

ing allele contributed from the paternal genome dominantly complements the maternal

allele of Gene X to release its repressive effect, thus resulting in detection of Genes C

and D. Then, Genes C and D can be classified as epistatically controlled QTLs (epistatic

QTL). Therefore, attributed to the unique design of the half-sibling F1 population in

the present study, one of the genetic mechanisms of heterosis utilization is explained

for single-cross breeding in modern maize industry. Although an advantageous QTL

normally segregates in one heterotic group, the beneficial effect of the QTL is epistati-

cally controlled by another QTL; this deleterious epistasis is diminished by the benefi-

cial alleles contributed from another heterotic group, therefore resulting the expression

of significant heterosis observed from either F1 phenotypes or MPH values (Fig. 4b,

middle and rightmost panel).

Although various direct or indirect molecular interactions may underlie the observed

epistasis, one possible mechanism may involve transcriptional regulation that may

cause changes in gene expression dosage, assuming that Gene X imposes a strong

repressive effect on Genes C and D (Fig. 4c). While transcription of Genes C and D is

epistatically repressed by Gene X in the maternal genome, alleviation of the repressive

effect of Gene X in the hybrid genome activates Genes C and D. This change in the

molecular network in F1 hybrids results in the detection of Gene C (additive effect) in

the F1 population but not when using the derived MPH phenotypic values, while Gene

D (dominant effect) is undetectable in the F1 population but is detected when using the

derived MPH values (Fig. 4c).

Epistatic interactions between QTLs contributed to heterosis of PH and EW

Across the 166 heterosis-related QTLs detected across the thirty F1 populations, the

three forms of genetic effects exhibited different proportions of additive (5.4%), domin-

ant (5.4%), and epistatic (89.2%) QTLs contributing to DTT, PH, and EW. In addition,

these proportions differed in each F1 population. For example, while DTT showed rela-

tively equal numbers of the three QTL classes, epistatic QTLs contributed much more

to PH and EW (Fig. 5a). Additive QTLs drove most of the variation in DTT when com-

pared to dominant and epistatic QTLs. By contrast, epistatic QTL contributed most to

PH and EW and accounted for the highest contribution to F1 heterosis for these traits

(Fig. 5b), which is consistent with the observation that EW experienced the strongest

heterosis and DTT the lowest heterosis.
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Fig. 5 Epistatic Interactions Contributing to the Heterosis of PH and EW. a Proportions of additive,
dominant, and epistatic QTLs detected by GWAS for the three traits. The number of QTLs for each trait
were averaged over the thirty F1 populations. b Different contributions of additive (Add), dominant (Dom),
and epistatic (Epi) effects to DTT, PH, and EW. We computed the cumulative QTL effects for the three
classes of QTLs based on the significant QTLs detected in each of the thirty F1 populations. c An epistatic
interaction between the BR2 and ubi3 QTLs contributes to the heterotic performance of PH in F1 hybrids. In
the maternal population (left panel), the ubi3-AA genotype exhibited the shortest PH in the BR2-aa
background (green boxes), indicating that BR2-aa suppresses ubi3-AA. In the Zheng58 (BR2-TT and ubi3-tt in
Zheng58) F1 population (middle panel), the ubi3-tA genotype exhibited the tallest PH in the BR2-Ta
background (green boxes), indicating that the suppression of ubi3 by BR2 is relieved due to the
complementation of the recessive BR2-t allele by the dominant BR2-T allele in F1 hybrids. The superior
heterotic performance is also reflected in the MPH of PH (right panel). Uppercase bases represent dominant
alleles and lowercase bases represent recessive alleles. d Epistatic interaction between BR2 and ubi3 QTLs
contributes to the heterotic performance of EW in F1 hybrids
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The high proportion of epistatic effects contributing to PH and EW may be attribut-

able to QTL interactions, as exemplified by the genetic interaction detected between

the dominant QTL BR2 on chromosome 1 and the epistatic QTL ubi3 on chromosome

6 (Fig. 3c). We hypothesized this epistatic interaction agreed with the scenario illus-

trated in Fig. 4b, since ubi3 was only detected in the F1 population but not in the ma-

ternal population. Genetic interaction analysis between the BR2 and ubi3 loci indicated

that the most likely scenario called upon the homozygous ubi3-AA genotypes as being

repressed by the recessive BR2-aa genotypes in the maternal population. The resulting

repression prevented the detection of the ubi3 QTL by GWAS in the maternal popula-

tion. In F1 hybrids, however, the recessive BR2-a allele is complemented by the domin-

ant BR2-T allele from the paternal genome, removing the epistatic repression and thus

allowing the ubi3-T allele to fully express the PH trait (Fig. 5c).

Furthermore, the 32 lines carrying the AA genotypes at both BR2 and ubi3 exhibited

the lowest EWs in the maternal population, but their EWs significantly increased to be-

come the best performing genotypic group in the Zheng58 F1 population (Fig. 5d).

Thus, although ubi3-AA is the favorable genotype that positively contributes to EW, its

beneficial effect is repressed by the unfavorable, recessive BR2-aa genotype. In the F1
hybrids, the introduction of the favorable, dominant BR2-T allele from the paternal

genome complements the deleterious effects of the BR2-a allele to activate the benefi-

cial effects of the ubi3-A alleles. This combination of alleles results in the expression of

superior heterosis for EW in the F1 hybrids. It is worth noting that we detected the

BR2 and ubi3 QTLs across all thirty F1 populations, indicating that the epistatic inter-

action between the BR2 and ubi3 QTLs is a common mechanism for maize heterosis

for this trait, warranting further investigation (Fig. 3d).

Genetic inference of polygenic interactions during floral transition

Photoperiodic adaptation to different environments involves the precise timing of the

vegetative-to-reproductive transition to achieve stable yield production under each day-

length regime [40]. Genes initiating floral transition may communicate with those

terminating vegetative growth, resulting in a balance between flowering time and plant

height, as early-flowering results in shorter plants while delayed flowering allows

further increases in height due to prolonged vegetative growth [41]. BRD1, encoding a

brassinosteroid C-6 oxidase [38], was detected by GWAS as a major-effect QTL for PH

and offered us a good target to understand the underlying regulatory networks

(Fig. 3c). To study the effects of BRD1 within these networks, we divided the 1428

maternal lines into two groups according to their genotype at the tag SNP (chr1.s_

248796560) associated with the BRD1 peak. The tall PH group (215.3 ± 20.2 cm)

included 548 lines bearing the chr1.s_248796560-CC genotype (BRD1-CC) and the

short PH group (207.5 ± 20.0 cm) included 834 lines with the chr1.s_248796560-

TT genotype (BRD1-TT).

We performed GWAS for PH separately on the BRD1-CC and BRD1-TT groups

(referred to as conditional GWAS in the following text). Without the overwhelming

masking effect of BRD1, we detected additional peaks within the two groups, including

peaks at the BR2 and ca3p2 loci in the tall PH group, and peaks at the MADS69 and

ZCN8 loci in the short PH group (Fig. 6a). GWAS for DTT using the same two groups
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also exhibited differential signals: we detected peaks for the ca3p2, ZCN8, and myb74

loci in the tall PH group, and a different set of peaks in the short PH group mapping to

the MADS9, MADS69, MADS15, and ZCN8 loci (Fig. 6b). To further infer the geno-

typic interactions between BRD1 and the BR2, ca3p2, MADS69, and ZCN8 genes, we

further subdivided the BRD1-CC and BRD1-TT groups into subgroups according to

their genotypes at the tag SNPs associated with the four genes (subdivided one at a

time) to compare their PH and DTT phenotypes. We observed different DTT and PH

phenotypes in the subgroups for each of the four genes in the different BRD1 back-

grounds, suggesting that BRD1 may genetically interact with these (and potentially

other) genes to affect PH and DTT (Additional file 2: Figure S7).

Fig. 6 Polygenic interactions mediating floral transition inferred by conditional GWAS. a, b Manhattan plots for
GWAS of PH (a) and DTT (b) run separately as two subgroups of 584 maternal lines (BRD1-CC, top panels) and
834 maternal lines (BRD1-TT, bottom panels), divided according to the genotype for the peak SNP of
chr1.s_248796560 in the BRD1 QTL. The three dashed lines colored in red, green, and blue represent three
significance thresholds with p-value = 2.2e− 07, 1e− 06, and 1e− 05, respectively. c Selection of the optimal
genotypic combinations, namely Haplotype 1 (Hap1) and Haplotype 2 (Hap2) of the genes MADS69, ZCN8, and
myb74 that favor early DTT and short PH without affecting EW. The 11 Hap2-bearing maternal lines exhibit early
DTT, reduced PH and normal EW, and thus are determined to be the optimal haplotype combination. d
Comparison of the DTT, PH, and EW phenotypes of the 11 maternal lines carrying the optimal haplotype (Hap2,
blue) with the phenotypes of 48 Hap1 (red) and 280 Hap8 lines (green)
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The fact that we identified different sets of DTT- and PH-related genes by condi-

tional GWAS in contrasting BRD1 genotypic backgrounds suggest complex polygenic

interactions during the transition from vegetative growth to the reproductive phase.

The different phenotypes observed with the various allelic combinations at these genes

also strongly suggest that gene-regulation networks are being reshaped. Successful

MDB thus becomes possible, whereby coordinated selection of favorable genotypes will

generate optimal haplotype combinations to achieve the desired, balanced status of

multiple target traits. In the current study, we set our primary breeding goal as the se-

lection of compact maize cultivars suited for mechanical harvesting. Thus, we targeted

parental lines carrying genotypes favorable for short PH and early DTT, without redu-

cing EW, for selection with molecular design at the abovementioned genes. Among the

three flowering time genes exhibiting differential GWAS signals in the contrasting

BRD1 genotypic backgrounds, the early-flowering genotypes ZCN8-TT, MADS69-AA

and myb74-TT exhibited different effects on PH and EW (Additional file 2: Figure S7).

While ZCN8-TT caused short PH and lighter EW, MADS69-AA caused short PH with-

out significantly affecting EW (p-value = 0.369). Since myb74-TT caused significantly

earlier DTT (p-value = 2.4e− 11) without affecting PH or EW, we also included this

gene as an additional target for MDB.

When considering the four genes in our MDB trial, the two BRD1 genotypes showed

no discernible differences in PH for any of the early DTT genotypes of the three flow-

ering time genes (Additional file 2: Figure S8). We therefore excluded the BRD1 geno-

type in the current MDB trial. Although the combination of the early DTT genotypes

at the ZCN8, MADS69, and myb74 loci (denoted as Hap1, short for Hapotype1) showed

the earliest DTT and shortest PH, EW also dropped to the lowest weight compared to

other combinations, probably due to a strong negative effect of ZCN8-TT on EW

(p-value = 4.2e− 7) (Fig. 6c; Additional file 2: Figure S9). Thus, to balance DTT,

PH, and EW, the optimal combination for the three flowering time genes is ZCN8-

GG, MADS69-AA, and myb74-TT (referred to as Hap2). Of all maternal lines, only

11 shared these alleles, but they displayed intermediate DTT, reduced PH and, im-

portantly, unaffected EW (Fig. 6d), as designed. In addition, their F1 hybrids with

Zheng58 and Jing724 exhibited a similar trend of earlier flowering time and re-

duced plant stature without affecting ear weight (Additional file 2: Figure S10).

Discussion
Maize was among the first domesticated crops for which heterosis was exploited for

breeding [42] and is an ideal model plant for studying heterosis [20, 22]. In this study,

we analyzed the genotypes and phenotypes of 42,820 F1 hybrids derived from thirty F1
populations. We created these hybrids by crossing the CUBIC lines developed from

indigenous Chinese HZS germplasm with thirty diverse elite tester lines of various

genetic backgrounds. Such a large and varied dataset presents a valuable genetic

resource for identifying heterosis-related genes and QTLs and facilitates a dissection of

the contribution that heterosis has brought to maize improvement in the modern seed

industry. We also illustrate the integrative use of G2P and MDB to implement big

data-assisted decision-making in maize breeding. With a set goal of breeding compact

maize cultivars suited for mechanical harvesting, we used MDB to select optimal geno-

typic combinations favoring short, early-flowering plants without sacrificing yield. The
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successful implementation of MDB is based on an assumed pathway involving poly-

genic interactions for floral transition that balances flowering time and plant stature.

This assumption is supported by the understanding that crop improvement via artificial

selection has reshaped gene-regulation networks to fine-tune phenotypic alterna-

tions [14, 41].

Dominance complementation of deleterious alleles activated epistasis

Heterosis has been reported to result from dominant and epistatic effects involving

many genes with complex allelic, intra-genomic, and inter-genomic interactions [43].

The unique design of half-sibling F1 populations composed by a diverse panel of com-

plementing heterotic groups provides the unprecedented opportunity to dissect the

genetic basis of heterosis utilization in maize improvement. With such a design, we dis-

covered heterosis-related QTLs that might have been overlooked if only one heterotic

background was analyzed. For this type of QTLs (Genes C and D), even if they are

beneficial to traits and normally segregate in one population, their advantageous effects

may be epistatically repressed by another QTLs (Gene X). When the population is hy-

bridized with inbred lines from a complementing group that may generate excellent

heterotic effects, such deleterious epistasis is diminished, resulting in expression of

superior agronomic traits in F1 hybrids. We believe this is a common mechanism of

heterosis utilization for single-cross breeding in modern maize industry.

We uncovered three forms of genetic effects underlying heterosis, the most prevalent

of which was due to epistatically controlled QTLs (89.2%), with a small proportion of

dominant QTLs (~ 5.4%). We have several explanations to the detection of dominant

and epistatically controlled QTLs for heterosis. During the process of constructing the

1404 CUBIC lines in six generations of open pollinations and six generations of self-

pollinations, the deleterious alleles with large effects negative to fitness might have been

eliminated, resulting in the accumulation of many slightly deleterious mutations main-

tained. On the other hand, given that deleterious allele in maize are often rare [44], the

number of founder lines in our study may be limited to detect such rare and modest-

effect mutations. That may be why our study directly detected few dominant QTLs

through GWAS with very strict significant threshold, although the overall contribution

of dominance complementation of deleterious alleles to heterosis can be observed [23].

More importantly, in our design, we propose the dominant complementation of dele-

terious allele in F1 hybrids may release its repressive influence on the detection of

downstream QTLs, that were defined as the epistatically controlled QTL. The preva-

lence of epistatically controlled QTL in our data may support the finding that domin-

ance complementation is crucial for heterosis and may help explaining the co-

contribution of dominant QTLs and epistatically controlled QTLs to hybrid vigor.

Molecular interpretation of the abovementioned interaction was exemplified by the

relationship of the BR2 and ubi3 loci, in which dominance complementation may dis-

rupt the epistatic repression of advantageous alleles to recover superior F1 phenotypes

(Fig. 5c, d). Heterotic effects arising from such disruption may initially occur on a few

large-effect loci in early developmental stages but may then cascade into genome-wide

epistatic effects causing heterosis in traits expressed in later developmental stages, such

as grain yield (Fig. 5b). Thus, although each epistatic QTL may contribute only a minor
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effect, their prevalence and their early action in networks amplify the effects arising

from additive and dominant QTLs and can ultimately lead to superior performance of

F1 genotypes. We clearly detected distinct epistatic QTLs in different genetic backgrounds,

offering an explanation as to why conclusions from previous heterosis studies using one or

a few populations lacked consistency.

The prevalent genetic epistasis identified in this study may be supported by a

genome-wide trans-eQTL regulatory network in maize [45], while the allelic interac-

tions between parental genomes contributing to heterosis may arise from the epige-

nomic reprogramming of key genes that promote growth, fertility, and fitness [46]. On

this basis, we suggest a hypothetical model to extend our understanding of maize heter-

osis. Under this model, yield heterosis results from multiple QTL effects accumulated

during the entire developmental process of a hybrid plant (Fig. 7a). During the early

stages of vegetative growth, additive and dominant QTLs contribute major effects to

plant stature. Once floral transition is initiated, flowering time QTLs with additive and

Fig. 7 A proposed model of polygenic interactions underlying floral transition facilitating molecular design
breeding. a Schematic model positing that yield heterosis is mainly attributable to the cumulative effects of
epistatic QTLs during the entire developmental process. b The hypothetical regulatory pathway underlying floral
transition in maize, including the placement of the putative functions of ZmNF-YB3, BRD1, and BR2. Orthologous
flowering time genes in rice are given in parentheses. Indirect interactions with unknown mechanisms are
indicated as dotted lines. Genes detected by GWAS analysis in this study are highlighted in red. c Trait
improvement with MDB-assisted selective breeding and genome editing. We assume here that three genes form
a regulatory network that we can manipulate for refined adjustment of flowering time and plant stature. In
selective breeding, since Gene A serves as an epistatic regulator of Genes B and C, natural variants with activating
functions for the three genes must be all pyramided into one inbred line. We can now do this via MDB to select
the optimal genotypic combination. We can also do this with genome editing, by artificially modifying the
repressive variants into their activating variants to achieve the desired improvement goal
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dominant effects interact with the QTLs responsible for vegetative growth to coordin-

ate communication between the vegetative and reproductive modules and to balance

flowering time and plant stature. Simultaneously, dominance complementation epistati-

cally allows the activation of additional QTLs, reflected by the genome-wide prevalence

of epistatic QTLs contributing to final yield heterosis in each plant.

Polygenic interactions in maize improvement sets the theoretical basis for molecular

design breeding

Selective breeding increases population genetic diversity and the frequency of rare,

favorable alleles, followed by artificial selection of desired phenotypes to improve a

given trait [3]. The genetic design of the 1404 CUBIC lines developed from the 24 elite

founders allows us to interrogate the genomic basis of traits related to improvement in

modern crop breeding. We uncovered polygenic interactions in multiple aspects of bio-

logical processes contributing to maize improvement, such as the interaction between

BR2 and ubi3, which demonstrate the role of epistasis in heterosis. In addition, the re-

sults from conditional GWAS based on contrasting genotypes at the major-effect gene

BRD1 indicates the existence of complex polygenic interactions, according to the differ-

ential GWAS signals of DTT and PH genes presented in the two subgroups of CUBIC

lines. These QTLs mapped to multiple previously reported genes, including ZCN8,

MADS69, RAP2.7, ZmEHD1, BRD1, BR2, and ca3p2, suggesting that these genes func-

tion as a network subjected to artificial selection to fine-tune phenotypes.

A role for all the abovementioned genes has been previously described in the control

of vegetative growth and floral transition. The developmental process of vegetative-to-

reproductive transition is one of the most critical stages in crop breeding, and breeders

must select the optimal regulatory pattern to balance flowering time and plant stature.

One selection target for this balance has been the ca3p2 locus, the only QTL detected

for both DTT and PH. This gene exhibited highly tissue-specific expression patterns in

early developing embryo, tassels 12 days after pollination, V3 leaves, stems and shoot

apical meristem tissues (Additional file 2: Figure S11) [47]. Collectively, these results

point to a function for ca3p2 in floral transition and tissue differentiation, and perhaps

in bridging the vegetative and reproductive growth modules. The ca3p2 gene encodes a

HEME ACTIVATOR PROTEIN3b (HAP3b) subunit of the CCAAT-box-binding

transcription factor belonging to the Nuclear Factor Y (NF-Y) family. It was therefore

previously called ZmNF-YB3 [48].

The ZmNF-YB3 gene is homologous to the rice (Oryza sativa) gene DAYS TO HEAD

ING 8 (DTH8, also named OsGhd8). This gene encodes a protein with a HAP3h do-

main that physically interacts with the CCT domain-containing proteins HEADING

DATE 1 (OsHD1) and OsGhd7 to suppress flowering under long day conditions

through the downregulation of EARLY HEADING DATE (OsEhd1) and OsHd3a tran-

scription [49–52]. OsDTH8 also exhibits pleiotropic effects on plant height and grain

yield, presumably through its indirect interaction with phytohormone signaling path-

ways [49]. The ZmNF-YB3 gene thus most likely executes a similar function as

OsDTH8 in suppressing flowering, independently of the MADS69-RAP2.7-ZCN8 mod-

ule. In addition, the concurrent detection of ZmNF-YB3 with the BR2 and BRD1 QTLs

suggests the involvement of the brassinosteroid (BR) and auxin phytohormones in
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coordinating floral transition. This hypothesis is consistent with previous evidence

pointing to the importance of BR signaling during floral transition, perhaps involving

direct communication between BR and auxin [53–55]. Based on previously character-

ized orthologous flowering genes in maize and rice, and the new information presented

here, we propose a theoretical model that includes the participation of ZmNF-YB3 and

integrates BR and auxin signaling in the maize flowering pathways (Fig. 7b). Although

the model is composed of genetically inferred and indirect interactions that have not

yet been validated, it also presents a big picture that can guide future investigations on

the mechanisms of floral transition in maize.

We postulate that the design of optimal genotypic combinations is possible due to

the underlying processes reshaping gene-regulation networks in the examined germ-

plasm, which result from the recombination between effective regulatory variants in

target genes. The above theoretical model of a polygenic network forms a practical

basis to employ molecular design with natural sequence variation to fine-tune a pheno-

type. A role of BRD1 in the regulation of leaf angle has been validated [56], suggesting

that BRD1 may also be a key gene for the selection of compact maize cultivars featuring

early-flowering time, short plant height, and erect leaves, phenotypes that will make

such cultivars well-suited for mechanical harvesting. Two biotechnology-facilitated

methods may accelerate the achievement of this projected breeding goal. We have

described MDB-assisted selective breeding with natural variation; the other method is

the direct modification of key genes by genome editing to create artificial variation

(Fig. 7c). In selective breeding, multiple factors may restrict the efficiency of MDB,

including the allele frequency of the underlying regulatory variation and the com-

plexity of epistatic interactions. Thus, a large effective population size is critical for

MDB to select desired genotypic combinations on a sufficient number of candi-

dates. Genome editing may be used to overcome this obstacle by directly creating

artificial variation on multiple key gene sequences to form new regulatory patterns.

In summary, our hypothesized model and predicted underlying regulatory changes

provides a powerful method to direct hybrid breeding and heterosis utilization for crop

improvement in which artificial selection on polygenic interactions can bring together

the optimal timing and dosage of relevant gene expression. This will replace the “black

box” of phenotypic or GS breeding and allow desired phenotypes to be designed and

achieved directly, speeding both gain from selection and the release of new varieties

with desirable traits.

Conclusions
To tackle the century-old mystery of heterosis, we assembled a large-scale novel

population design with multiple half-sibling F1 populations. This ever-large synthetic

population with diverse genetic backgrounds provides the maize community a rich

resource for quantitative genetic research, gene mining, and breeding applications for

agronomic traits and heterosis. Integrating the art-of-state technology of next-

generation sequencing and machine learning, we discovered abundant epistatically

controlled loci and genes contributing to heterosis, whose effects are undetectable

under one background and thus probably be overlooked in traditional works. The

epistatic reformation by complementary hybridization of the maternal and paternal

genomes provides the new angle to understand the hybrid superior. The optimal gene
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haplotypes that dosage-sensitively balanced the plant maturity, plant height, and yield

can be assembled or created by genome editing technology, that provided informative

guidance and perspective for the future precise breeding.

Methods
Development of the thirty F1 populations by NC-II design

Development of the CUBIC population used as the maternal inbred lines in this study

has been previously reported in Liu et al [34]. The 1404 recombinant inbred lines in

the CUBIC population are descendants of 24 elite founder lines that mostly belong to

the Lvda Red Cob (LRC) and SiPingTou (SPT) heterotic groups. LRC and SPT have

been the most widely used indigenous germplasm in Northern and Central China over

the last century, representing a very large genetic pool of local adaptive alleles for the

various growing conditions encountered in China [57]. The 30 paternal testers are

mostly foreign imported maize inbred lines that have been further improved by Chinese

breeders. These lines have diverse genetic backgrounds covering six heterotic groups:

Reid, Lancaster, waxy, tropic, P-population, and X-population germplasm.

Crossing the 1428 maternal lines and 30 paternal testers will theoretically generate

42,840 F1 combinations. We first planted 8652 F1 hybrids in 2014 and 2015 to collect

field-measured phenotypes and generate the training population. We planted all 1428

maternal lines and two F1 populations, corresponding to a total of 2856 F1 hybrids, in

2014 in five locations to collect the phenotypic data. These two F1 populations are de-

rived from the crossing of 1428 maternal lines with the Zheng58 and Jing724 testers.

We collected phenotypic data over two consecutive years to test for repeatability and

calibrate for systematic bias within the dataset. The five chosen locations were the cities

of Yushu (Jilin Province, 43° 42′ N, 125° 18′ E), Shenyang (Liaoning Province, 42° 03′

N, 123° 33′ E), Beijing (40° 10′ N, 116° 21′ E), Baoding (Hebei Province, 38° 39′ N,

115° 51′ E), and Xinxiang (Henan Province, 35° 27′ N, 114° 01′ E) in Northern China.

In 2015, we planted the 30 paternal testers and 6210 F1 hybrids resulting from the

crossing of 207 randomly selected maternal lines with the 30 paternal testers in the

same five locations to collect phenotypic data. We also included the hybrid cultivar

ZhengDan958 as a control once every 50 rows.

Phenotypic data collection and processing

We planted the 237 parental lines and 8652 F1 hybrids in the field following a com-

pletely randomized design, in which 17 individual plants per inbred line or F1 hybrid

were planted as a row. In each location, we planted the maternal line Chang7-2 once

every 30 rows as control within the plots of parental lines, and the hybrid cultivar

ZhengDan958 once every 50 rows as control within the plots of F1 hybrids. We later

used the phenotypes measured for Chang7-2 and ZhengDan958 to correct for spatial

heterogeneity in the field. We collected phenotypic data for three representative agro-

nomic traits: days to tasseling (DTT), measured as the interval from sowing date to the

date when tassels appeared on at least ten individual plants per line; plant height (PH),

measured as the vertical height from the ground to the top of the tassel; and ear weight

(EW), measured as the average weight of five fully formed ears in the middle of each

row to avoid edge effects within the plots.
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To reduce the influence from the environment (years and locations), we computed

the best linear unbiased prediction (BLUP) value of each F1 hybrid and each parental

line for the phenotypic data in the five locations and 2 years, using a mixed linear

model in the R package “lme4” [58]. BLUP values for each phenotype were then used

for subsequent analysis. We computed the middle-parent heterosis (MPH) score as

MPH ¼ ðyh−
ymþyp

2 Þ= ymþyp
2 , where yh is the hybrid phenotypic values and ym and yp are

the phenotypes from the maternal and paternal line, respectively. Because phenotypic

variation caused by population stratification may introduce systematic bias in genomic

selection (GS) prediction, we normalized BLUP values calculated for the F1 hybrids

within each set of F1 populations to relative values using the z-score algorithm: zi ¼ ðyi
−y:Þ=sdðy:Þ, where yi is the phenotype of the F1 hybrid or parental line i, y: is the mean

phenotype of the F1 hybrid or parental line and sd(y.) is the standard deviation of the

phenotype in the F1 hybrid or parental line. The z-scores were subsequently used in GS

predictions.

Genotypic data processing

We called 14.8 million single nucleotide polymorphisms (SNPs) from whole-genome

resequencing of all 1428 maternal lines and 30 paternal testers by using the same pipe-

line described in the previously reported analysis of the CUBIC population [34]. Before

inferring the genotypes of all 42,840 F1 hybrids, we performed a series of SNP filtering

steps using the following criteria: (1) if a SNP was heterozygous in a parent, the SNP in

the hybrid was annotated as missing; (2) SNPs showing a heterozygous rate ≥ 10% in

the maternal population and heterozygous rate ≥ 1/30 in the paternal population were

removed; (3) SNPs showing no polymorphism in either the maternal or paternal popu-

lations were removed; (4) SNPs showing minor allele frequency (MAF) < 0.02 in paren-

tal lines were removed; (5) SNPs showing minor homozygous genotype < 0.5% (210

lines) out of the 42,840 F1 hybrids were removed. SNP filtering resulted in 4,549,828

high-quality and informative SNPs remaining for downstream analysis. We then in-

ferred the genotypes of all 42,840 F1 hybrids from the genotypes of their maternal and

paternal parents for these 4,549,828 SNPs. Missing genotypes of the 42,840 F1 hybrids

were imputed using the software Beagle version 4.0 [59]. We performed a population

structure analysis using the FlashPCA software [60], and constructed the phylogenetic

tree for the 1458 parental lines using the unweighted neighbor-joining method imple-

mented in the R package “phangorn” [61].

G2P prediction of the 34,188 F1 hybrids

We used data from the 8652 F1 hybrids (20.2% of the samples, consisting of the model-

ing population with known genotypes and phenotypes) to train the model to predict

the phenotypes of the remaining 34,188 F1 hybrids (79.8% of the samples, comprising

the predicting population with known genotypes). The 1:4 sample division is a com-

monly used ratio in the seed industry to perform G2P-assisted breeding, considering

the balance between phenotyping cost and prediction precision [62]. We utilized the

genomic best linear unbiased prediction (gBLUP) model to complete the phenotypes of

samples from the thirty F1 hybrid populations using the “sommer” package in R [63].

The model used to implement gBLUP was:
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y ¼ Xβþ Zuþ ε

where y is a vector of phenotypes, X is a designated matrix for the fixed effects, β is a

vector of fixed effects, Z is a designated matrix for random effects, u is a vector of addi-

tive genetic effects for an individual with variance Kσ2u in which K is the centered gen-

omic relationship matrix (cGRM) deduced by the GEMMA (Genome-wide Efficient

Mixed Model Association) software [64] based on all of the ~ 4.5 million high-quality

SNPs called from resquencing data of the 1458 parental lines, and ε is a vector of re-

sidual errors with variance Iσ2e . To reduce the influence caused by population stratifica-

tion, we treated the phenotypes of the maternal and paternal lines as covariates (fixed

effects) in the model.

The G2P model took the z-score-transformed phenotypes of training samples in

order to avoid the systemic bias across the thirty sets of F1 populations. When predic-

tion was accomplished, the z-score form of predicted phenotypes were converted back

to absolute values using the following algorithm applied within each F1 population: yi
¼ zi � sdðyÞ þ y, where zi is the z-score form of the predicted phenotypes of F1 hybrid i

in the predicting population; y and sd(y) are the mean and standard deviation of the

phenotypes of training samples, respectively. To evaluate model precision, we com-

puted the Pearson correlation coefficient (r) between predicted phenotype and observed

phenotype for the samples with known phenotypes.

Simulation one: Evaluation of GWAS accuracy at the six levels of phenotype prediction

accuracy

To quantitatively evaluate GWAS accuracy in terms of both false discovery rate (FDR)

and detection power (DP), a series of simulation analyses were conducted. Based on the

actual genotypes from the 4.5 million SNPs in the CUBIC population, we randomly se-

lected a set of 100,000 SNPs for simulations. Assuming a polygenic trait is determined

by 20 QTNs (quantitative trait nucleotides) contributing effects following an exponen-

tial distribution, the 20 QTN effects were expressed as βi = 0.96i where i = 1, 2, 3, …,

20 [65]. From 100,000 SNPs, the 20 QTNs were spiked into a set of randomly selected

SNPs (0.25 ≤ MAF ≤ 0.35).

We first simulated the observed phenotype of one sample by summing the 20 QTNs’

contribution expressed as y ¼ P20
i¼1xiβi where xi and βi are the numeric genotypic

values and simulated QTN effects at the ith QTN, respectively. Contribution of each

QTN was further represented by a value of PVE (phenotypic variance explained)

expressed as PVE = βf(1 − f) where β is the QTN effect and f is allelic frequency in the

1428 samples. Based on PVEs, the 20 QTNs were categorized into three classes of

QTNs with major (4 QTNs, PVE ≥ 7%), moderate (6 QTNs, 4.5% ≤ PVE < 7%), and

minor (10 QTNs, PVE < 4.5%) contributing effects.

Then, we simulated the predicted phenotypes with six levels of prediction accuracy,

so that the correlation between GWAS and G2P accuracies may be established. Simula-

tion of predicted phenotype was based on the equation of y′ = y + ε where y is the simu-

lated observed phenotype and ε is the residual representing the fluctuated prediction

bias assumed following a normal distribution expressed as Nð0; σ
2
yð1−r2Þ

�
r2
Þ where r2

is the squared correlation coefficient between the observed and predicted phenotypes.
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Thus, quantitative evaluation of FDR and DP of GWAS under six levels of prediction

accuracy (r2 = 1.0, 0.8, 0.6, 0.4, 0.2, and 0.1) may be carried out. Because GWAS power

is also influenced by population size, each simulation was performed for six times,

using five randomized subsets (207, 400, 600, 800, and 1000 samples) out of the 1428

samples as well as the complete set. Then, 36 combinations of population size and pre-

diction accuracy were set for one round of simulation and each round was repeated for

500 times to obtain averaged results of FDR and DP. During each time of repeat, a new

set of 20 QTNs and predicted phenotypes with randomized residuals were generated.

Finally, the whole simulation process generated a total of 18,000 sets of GWAS results

for computing averaged FDR and DP under the six different circumstances of popula-

tion size and prediction accuracy.

Simulation two: Correlation between population size and GWAS detection power using a

spike-in QTN under different genetic structures

To demonstrate that any enhancement of GWAS detection power using 1428 samples

can be attributed to the enlarged population size compared to that of 207 samples, we

conducted a simulation analysis to determine the correlation between population size

and GWAS detection power. The GWAS simulation was conducted following a previ-

ously published procedure [66].

In this procedure, one SNP (0.25 ≤ MAF ≤ 0.35) was randomly picked from the ~ 4.5

million SNPs, and a spike-in QTN (quantitative trait nucleotide) effect was assigned to

this SNP; The QTN effect is a designated coefficient of the standard deviation (SD) of the

actual phenotypic distribution of Zheng58 F1 hybrids, in which 19 gradients of QTN ef-

fects ranging from 0.1 to 1.9 with a step of 0.1 were used for each round of simulation.

Based on the genotypes (two alleles, e.g., AA and AG corresponding to high and low phe-

notypes, respectively) of the chosen SNP among Zheng58 F1 hybrids, the original pheno-

type was transformed to a simulated phenotype, calculated using the original phenotype

of the AA hybrids + (QTN effect × SD) and AG hybrids − (QTN effect × SD). Under each

QTN effect gradient, we randomly picked 100 SNPs to generate 100 simulated phenotypic

distributions for the Zheng58 F1 hybrids. Next, we performed GWAS 100 times using the

100 sets of simulated phenotypes for the Zheng58 F1 hybrids. Using a p-value = 2.2 × 1e−

7 as the significance cutoff, we counted the number of significant SNPs (n) out of the 100

SNPs passing the cutoff and used the corresponding percentage (n/100) to represent the

GWAS detection power. For each trait, we repeated the above procedure 19 times using

the 19 QTN effect gradients to generate GWAS detection power predictions on the 207

and 1428 samples for a comparison. Finally, we conducted a simulation for effect and

sample sizes that impact on the GWAS detection power under the genetic architectures

of three real traits: DTT, PH, and EW in both measured and predicted phenotypic varia-

tions. With this simulation analysis, we deduced that a significant QTN with an effect of

0.4 would be detected using 1428 samples, while using 207 samples the QTN effect would

have to be over 1.2 to be detected.

GWAS analysis and QTL summary

To limit the influence of population stratification caused by the 30 paternal testers

from different heterotic groups, we performed GWAS analysis within each set of F1
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populations using the GEMMA software. The pairwise kinship matrix was calculated

for each set of 1428 F1 hybrids using the centered genomic relationship matrix (GRM)

algorithm in GEMMA based on the ~ 4.5 million SNPs. We then loaded the GRM with

the model as a polygenic random effect. We performed a total of 183 rounds of GWAS

on 1428 maternal inbred lines, for the three traits and their associated MPH values for

each of the 30 F1 populations.

To better interpret the genetic architecture and identify key genes for the six traits,

we summarized all QTLs for DTT, MPH.DTT, PH, MPH.PH, EW, and MPH.EW from

the 183 sets of GWAS results in the maternal population and the 30 F1 populations as

follows. We grouped significant SNPs (p-value ≤ 1e− 6 cutoff) that were spaced less

than 800 kbp apart into one locus, 800 kbp being the length of linkage disequilibrium

(LD) decay at r2 = 0.1 [34]. We calculated the pairwise LD between two adjacent loci; if

any pairs of SNPs between the two loci had r2 > 0.1 and the two peaks were spaced < 5

Mbp apart, the two adjacent loci were further merged as a single locus. This process

was performed until no more loci could be merged. Next, if a locus contained ≥ 10 sig-

nificant SNPs, the locus was defined as a QTL in which the most significant SNP was

chosen as the peak SNP. If a locus contained < 10 significant SNPs, an extended region

of 400 kbp (half of the LD length) was searched for SNPs exceeding p-value = 1e− 4,

until the locus contained ≥ 10 SNPs at this suggestive level, at which point it was called

a QTL with the most significant SNP chosen as the peak SNP. After summarizing

QTLs for each trait or MPH associated with each trait within each F1 population, we

generated an overall QTL summary by combining the QTLs over the 30 F1 populations.

This was done by merging the overlapping QTLs from within any two F1 populations.

Therefore, for each trait, three sets of merged QTL maps were generated, including

QTLs identified in the maternal population; and QTLs of the trait and of the

MPH.Trait in hybrid populations.
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