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SUMMARY

Traditional genetic studies focus on identifying genetic variants associated with the mean 

difference of a quantitative trait. Because genetic variants also influence phenotypic variation via 

heterogeneity, we conducted a variance-heterogeneity genome wide association study (vGWAS) 

to examine contribution of variance heterogeneity to oil-related quantitative traits. We identified 

79 unique variance-controlling single nucleotide polymorphisms (vSNPs) from the sequences of 

77 candidate variance heterogeneity genes for 21 oil-related traits using Levene’ test (P < 1.0 × 

10−5). About 30% of the candidate genes encode enzymes working in lipid metabolic pathways, 

and most of which define clear expression variance QTLs (evQTL). Of the vSNPs specifically 

associated with the genetic variance heterogeneity of oil concentration, 89% can be explained by 

additional linked mean-effects genetic variants. Furthermore, we demonstrated that gene x gene 

interactions play important roles in the formation of variance heterogeneity for fatty acid 

compositional traits. The interaction pattern was validated for one gene pair (GRMZM2G035341 

and GRMZM2G152328) using Yeast two-hybrid (Y2H) and Bimolecular fluorescent 

complimentary (BiFC) analyses. Our findings have implications for uncovering the genetic basis 

of hidden additive genetic effects, epistatic interaction effects, and we indicate opportunities to 

stabilize efficient high-oil maize (Zea mays L.) breeding and selection. 

INTRODUCTION

In quantitative genetics, understanding the genetic architecture affecting a quantitative trait is key 

to unlocking future improvement strategies. Total phenotypic variance can be partitioned into 

additive (VA), dominance (VD), epistatic (VE) and environmental (Ve) variance. The focus of 

genome-wide association studies (GWAS) has typically been to detect the additive effects of 

genetic variants and use them to explain the contribution of each candidate gene independently to A
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the narrow-sense heritability of a trait (h2=VA/VP) (Leal, 1998). However, only a limited proportion 

of the genetic contribution to phenotypic variance can be detected in this additive approach. The 

remaining genetic contribution to phenotypic variation of quantitative traits is typically called 

“missing” heritability, which is caused by epistasis, phenotypic plasticity or rare genetic variants 

(Makowsky et al., 2011, Shen et al., 2012, Wood et al., 2014, Ek et al., 2018, Liu and Yan, 2019). 

Dissection the genetic variants associated with the variance heterogeneity contributing to the 

phenotypic variability is an alternative way to explore the “missing” heritability. Variance 

heterogeneity is a measure of how much the variance of trait differs between two genotypes at a 

locus in a population (Forsberg et al., 2015). 

In the 1980s, variance heterogeneity QTL (vQTL) had been observed with effects on the variance, 

not the mean, of a complex trait (Weller et al., 1988). Recently, studies in human, plants and yeast 

confirmed that variance-heterogeneity GWAS (vGWAS) is an effective way to detect variance 

difference between genotype and finally identify unexplored genetic variations with non-additive 

effects contributing to broad-sense heritability (Struchalin et al., 2010, Rönnegård and Valdar, 

2011, Shen et al., 2012, Shen et al., 2014). What's even more exciting is that vGWAS is always 

performed to leverage existing GWAS datasets. It is now suggested that genetic variance 

heterogeneity due to extended linkage disequilibrium (LD) across a variance-controlling locus 

including multiple structural variants has been demonstrated at the MOT1 locus (Forsberg et al., 

2015). 

Phenotypic variance heterogeneity analysis is a useful method for detecting gene x gene or gene x 

environment interactions and has been used successfully in human studies (Struchalin et al., 2010, 

Hothorn et al., 2012, Wang et al., 2014). A vSNP (rs7202116) for an FTO (fat mass and obesity) 

variant controlled variance heterogeneity of BMI (body mass index), which affected by the 

interaction between genetic factors and environments including physical activity, alcohol 

consumption and socioeconomic status (Yang et al., 2012, Rask-Andersen et al., 2017). Gene x 

gene interactions can explain the variance heterogeneity of RNA levels in humans (Wang et al., A
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2014). However, the underlying mechanisms of variance heterogeneity are relatively unexplored 

in maize.

High-oil maize (with kernel oil concentration above 6%) is a popular resource for food, animal 

feed and bioenergy due to its high energy content and concentration of healthy polyunsaturated 

fatty acids. Detection of the genetic architecture of oil and fatty acid biosynthesis and 

accumulation will increase efficiency of selection gain for improvement of high oil levels and 

quality. In our previous study, 74 loci significantly (P < 1.8 × 10−6) associated with kernel 

oil-related traits were identified via GWAS in a maize association population including 500 inbred 

lines with 560,000 high quality SNPs (Li et al., 2013). Whereas the broad-sense heritability for ten 

fatty acid traits was found to be > 90%, only approximately 7.3-83% of the phenotypic variance 

for each trait could be explained by the significantly associated loci using an additive model (Li et 

al., 2013). Although using new statistical method, such as the A-D test which is particularly 

effective for abnormal phenotypes, or using polymorphic structural variants in GWAS, “missing” 

heritability of these oil-related traits still exist (Yang et al., 2014, Yang et al., 2019). A potential 

explanation for the “missing” heritability is that the traditional GWAS did not consider 

non-additive genetic contributions, such as genetic variance heterogeneity. 

In this study, we performed a vGWAS of maize kernel oil concentration and 20 oil-related traits to 

identify loci associated with variance heterogeneity that contribute to phenotypic variability. Next, 

we evaluated whether the variance heterogeneity could be explained by linked mean-effect SNPs 

or gene x gene interactions. To demonstrate validation of potential gene interactions, we used 

Yeast two-hybrid (Y2H) and Bimolecular fluorescent complimentary (BiFC) analyses, 

incorporating maize protein-protein interaction information available online, to present a 

comprehensive description of the interaction pattern of a candidate gene pair.

RESULTS

Variance-heterogeneity loci associated with oil-related traits A
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To identify vSNPs in the maize genome, we used Levene’s test to perform a vGWAS with 

~560,000 polymorphisms for 21 oil-related traits, including oil concentration, ten fatty acid 

compositional traits and ten fatty acid ratio traits. This method provided satisfactory vGWAS 

results as determined by Q-Q plots of p-values for each trait (Supplementary Figure 1). We 

identified 188 vSNPs with a significant effect on the variance of oil concentration and /or at least 

one of the other twenty fatty acid compositional traits at P < 1.0 × 10−5 (Supplementary Figure 1; 

Supplementary Table 1). When we merged the significant vSNPs detected in all traits, 79 unique 

vSNP, located in 77 unique candidate genes remained (Figure 1; Table 1; genes within a 100-kb 

flanking region of the lead vSNPs are also listed in Supplementary Table 2). Among the 79 vSNP, 

two were associated with more than one oil-related trait at P < 1.0 × 10−5, reflecting the strong 

correlation between these traits (Table 1). We also re-analyzed the variance heterogeneity using 

the double generalized linear model (DGLM) for the 79 vSNPs, and 62 of the 79 SNPs (78%) still 

reached the same significance threshold (Supplementary Table 3). Of these, 42 variance 

heterogeneity loci each explained more than 5% of the phenotypic variance (Table 1). 

To rule out false results due to population structure, we performed a vGWAS again using all 79 

loci and the lead traits in the normal-oil lines only (those with oil content < 6%). Thirty vSNPs 

affecting variance heterogeneity of fatty acid compositional traits were still significantly 

associated at P < 1.0 × 10−5 in the normal-oil lines (Supplementary Table 3). However, none of the 

vSNPs associated with oil concentration variance heterogeneity were identified in the normal-oil 

lines. For these fatty acid compositional traits, the variance-heterogeneity association and MAF of 

variance-controlling SNPs did not change notably, indicating that compositional traits have not 

been the target of selective breeding (Supplementary Table 3).

Relationship between vSNPs and SNPs identified by vGWAS and GWAS

To further understand the relationship between vSNPs and other SNPs, we compared the 

genome-wide p-value distributions resulting from the vGWAS and the GWAS from Li et al., 

(2013). There was little overlap; using the same genome wide significance threshold of P < 1.0 × A
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10−5, only seven SNPs were significantly associated in both analyses for all oil-related traits 

(Figure 2A). Only five of the 79 unique vSNPs had a significant effect on the mean of the traits at 

P < 1.0 × 10−5, so that only 6.2% of vSNPs are also GWAS SNPs for the same genes (Figure 2B). 

All five loci were positively correlated, as the variance of the oil-related trait increased with 

increasing mean (Supplementary Figure 2). These results indicate that vGWAS is an effective 

complement for GWAS analysis to identify a novel set of loci affecting the phenotypic variation 

by heterogeneity. 

We then estimated the contribution of genetic variance heterogeneity for each vSNP using  𝑉𝑝 =

 model (for more details see Methods). For 78% (62/79) of the loci, the genetic 𝑉𝑀 + 𝑉𝑉 + 𝑉𝑅

variance heterogeneity explained higher proportion than genetic mean effect of phenotypic 

variation, which means that variance heterogeneity is the primary factor affecting phenotypic 

variation for these loci (Figure 2C; Table 1; Supplementary Table 3). This result confirms that the 

vGWAS method is an effective way to detect novel loci involved in shaping the total phenotypic 

variance that contributes to the “missing” heritability and should be used as a compliment to 

GWAS.

Functions and genomic features of variance-heterogeneity controlling genes

To dissect the molecular mechanism of oil content, we annotated the 77 candidate genes 

containing the 79 vSNPs based on motif. There were 24 (31.17%) predicted genes involved in 

lipid metabolism in maize or Arabidopsis (Figure 3A; Table 1). The remaining 53 genes encode 

proteins including transcription factors, stress response factors and enzymes involved in non-oil 

biological pathways. Approximately a fifth of the identified genes don't have functional annotation 

information yet (Figure 3A; Table 1). Four of the candidate genes identified by vGWAS 

overlapped the previous GWAS results, including DGAT1-2 (encoding diacylglycerol 

acyltransferase), TAGL (encoding triglyceride lipases), and PDPC (encoding pyruvate 

dehydrogenase phosphatase), all of which are involved in lipid metabolism (Table 1). The Gene 

Ontology (GO) analysis of these 77 candidate genes indicate that they are significantly enriched in 

regulation primarily via hormone levels and transport, seed germination and post-embryonic A
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development, and lipid and amino acid catabolic processes (Figure 3B). These results illustrate 

that vGWAS is an ideal supplement to GWAS to unravel the potential molecular basis of complex 

traits.

To identify genes that may regulate variance heterogeneity of oil-related traits at the expression 

level, we tested association between the polymorphisms at a genome-wide scale and the mRNA 

expression levels for the 77 candidate genes identified by vGWAS using Leven’s test. At the P < 

1.0 × 10−5 significance threshold, 73/77 genes defined clear expression variance QTLs (evQTL) 

(Table 1; Supplementary Table 4). This resulted in the identification of 221 associated gene-SNP 

pairs (Supplementary Table 4), as multiple evSNPs were identified for many genes. Among 73 

candidate genes, 7 were associated with both cis- and trans-acting evQTLs. Trans-acting evQTL 

were more common (66/73 or 86%), indicating remote regulation mechanisms are the primary 

driver of expression variance heterogeneity (Table 1; Supplementary Table 3). At P < 0.01, 

expression levels of 40/73 genes were correlated with the phenotypic variation of the GWAS 

target traits or oil-related traits, suggesting that some of the genes affect phenotypic variance 

heterogeneity via transcriptional regulation (Supplementary Table 5). 

Identification of linked mean-effect SNPs contributing to variance heterogeneity

Genetic variance heterogeneity can be explained by additional SNPs with mean effect linked to 

vSNPs in human (Forsberg and Carlborg, 2017, Ek et al., 2018). To test the contribution of linked 

mean-effect SNPs to genetic variance heterogeneity, we performed association tests for SNPs 

located on the same chromosome as each vSNP with the target trait. For half of the vSNPs (41/79) 

we identified a linked mean-effect SNP at P < 1 × 10-5 (Table 2 & Supplementary Table 6). After 

adjusting for the significant mean-effect SNPs, we examined variance heterogeneity for these 41 

vSNPs. This resulted in 9 vSNPs still significantly associated with variance heterogeneity. The 

variance heterogeneity of the remaining 32 vSNPs can now instead be explained by mean-effect 

SNPs (Table 2, Supplementary Table 6). The MAF of the 32 vSNPs tended to be higher than that 

of the mean-effect SNPs, with a slight positive correlation trend between the pairwise MAFs A
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(Supplementary Figure 3A). In addition, high LD between the vSNP and the corresponding 

mean-effect SNP as measured by squared correlation coefficient (Supplementary Figure 3B)

Most of the 32 vSNP alleles associated with larger variance always linked with minor allele of 

mean-effect SNP on target traits (Supplementary Figure 4). For example, vSNP chr7.S_10514965 

on chromosome 7 in the vGWAS for oil concentration displayed a significant genome-wide 

genetic variance-heterogeneity (-log10P =5.00, Table 2). This associated vSNPs is located in the 

exon region of the gene GRMZM2G066290, which encodes a pyruvate kinase and synthesizes 

pyruvate, the first step of lipid metabolism to generate Acetyl-CoA (Li-Beisson et al., 2013). The 

variance heterogeneity for this vSNP is explained by one mean-effect SNP, chr7.S_9794647 with 

MAF = 0.05 (Table 2), which is associated with mean difference of oil concentration (Figure 4A). 

Four haplotypes can be constructed by combining alleles for the vSNP and linked mean-effect 

SNP (Figure 4B). The G-allele of the vSNP occurs most in the haplotype group carrying the major 

allele (G-allele) of the mean-effect SNP. The lines with the A-allele in the vSNP have two 

different haplotypes with similar numbers of genotypes (Figure 4B). Among the four haplotypes, 

the A-T showed the highest mean and moderate variance values for oil concentration, which can 

be used to conduct selection of favor allele combinations for oil concentration improvement and 

low phenotypic variability during high-oil maize selection. 

SNPs interacting across the genome contribute to variable phenotype 

Forty-seven vSNPs (9+38) were associated with variance heterogeneity that could not be 

explained by additional linked SNPs, and possibly represent biological interactions 

(Supplementary Table 7). To test such gene x gene interactions, we carried out a whole genome 

scanning to identify potential interaction SNPs (iSNPs) for each vSNP. A mixed linear model was 

used to identify the iSNPs, which are associated with oil phenotype among the maize inbred lines 

assigned to the large variance (L) group (see Materials and Methods). We observed highly 

significant statistical interactions for 36/47 vSNPs with at least one iSNP (Supplementary Table 7; 

Supplementary data). A
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The genes within a 100-kb flanking region of each iSNP are listed in the Supplementary data, and 

annotations provided potential gene functions (Supplementary data). We observed several 

biologically interesting gene pairs. For example, GRMZM2G137961 encodes an acyl-CoA 

N-acyltransferase and GRMZM2G096358 encodes a MYB domain protein (Supplementary data). 

Previous studies have validated that acyl-CoA N-acyltransferase plays a key role in fertility by 

regulating the lipid synthesis pathway in cotton (Fu et al., 2015), and that the direct or indirectly 

target genes of MYB-type transcription factors participate in fatty acid elongation and cuticle wax 

biosynthesis (Raffaele et al., 2008, Seo et al., 2011). Thus, oil-related variability analysis can 

identify potential functional relationships between genes and shed light on molecular mechanisms 

of quantitative traits. 

Interaction pattern validation of ZmZF_RING_H2 and ZmActin-1

To validate the statistical interactions identified in the previous analysis, we compared our results 

with a protein-protein interaction database for maize (PPIM) and found two overlapping gene 

pairs (Supplementary Table 8). We chose one gene pair (GRMZM2G035341 and 

GRMZM2G152328) that was confidently predicted to interact physically in the PPIM database, as 

a test case to validate in the laboratory. Figure 5A presents this high confidence interaction 

between vSNP chr8.S_8102492 from GRMZM2G035341 and iSNP chr5.S_10231102 from 

GRMZM2G152328. Individuals with a T genotype for vSNP chr8.S_8102492 were further sorted 

by chr5.S_10231102 genotypes. The increased variability in C22:0/C24:0 for individuals with the 

chr8.S_8102492-T genotype was explained by the heterogeneity of chr5.S_10231102 genotypes. 

GRMZM2G035341 has a plant-specific zinc finger motif and belonged to RING-H2 

(C3H2C3-type) zinc finger protein subfamily, which is abbreviated to ZmZF_RING_H2 in this 

study (Supplementary Figure 5). Phylogenetic analysis shown that it was clustered with 

Bradi2g00640 from Brachypodium distachyon (Supplementary Figure 5). Overexpression of a 

zinc finger encoding gene has been shown to activate lipid biosynthesis genes, thereby 

accelerating kernel oil accumulation (Li et al., 2017). GRMZM2G152328 encodes actin-1, here A
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called ZmActin-1. A homologous gene in cotton participates in cell expansion and cellulose 

synthesis during fiber elongation (Deng et al., 2016). 

To test whether the proteins (ZmZF_RING_H2 and ZmActin-1) interact, Y2H and BiFC analysis 

were performed. The interaction between ZmZF_RING_H2 and ZmActin-1 was observed in yeast 

two-hybrid assay (Figure 5B). We then used a BiFC assay to verified the interaction of 

ZmZF_RING_H2 and ZmActin-1. The BiFC assay demonstrated the presence of fluorescence in 

chloroplasts of tobacco cells co-transformed with ZmZF_RING_H2-YFPN and ZmActin-1-YFPC, 

while the chloroplasts of the control YFPN/YFPC transformants lacked fluorescence (Figure 5C). 

Together, these results indicate that ZmZF_RING_H2 interacts with ZmActin-1, and both are 

novel functional candidates involved in oil pathways via epistatic effect.

DISCUSSION

Phenotypic variation usually refers to the difference of phenotypic values among diverse 

genotypes. GWAS is a common method to elaborate the genetic mechanism of quantitative traits, 

and aims to identify loci, loci interactions, and locus x environmental interactions, that are 

associated with phenotype difference at a genome-wide significant level in a panel. Previously, we 

conducted GWAS and pathway analysis to explore the genetic architecture of oil-related traits in 

maize kernel (Li et al., 2013, Li et al., 2019). Although 26 genetic variants associated with oil 

concentration explained up to 83% of the phenotypic variation using an additive model, few loci 

associated with the fatty acid compositional traits were identified (Li et al., 2013). Furthermore, 

epistatic interactions are notoriously difficult to detect via GWAS because of the huge number of 

genotypes needed for sufficient statistical power to reliably find these interactions. It was therefore 

not surprising that we detected no significant epistatic interactions among all the mean-effect 

SNPs identified in Li et al., (2013). Thus, although GWAS is a powerful way to identify 

individual loci with the additive effects, it has limited power to detect non-additive genetic 

variance and variance heterogeneity which also contributing to phenotypic variation (Carlborg and 

S.Haley, 2004). A
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To identify variance-heterogeneity affecting loci using multiple statistical genetic models in 

GWAS and to further dissect underlying genetic architecture of mechanisms contributing to the 

broad-sense heritability that was missed in the traditional study, we re-analyzed GWAS dataset 

using Levene’s test to detect variance heterogeneity. This test controls false-positive rates and is 

suitable for non-normalized data, such as our oil-related phenotypic data (Struchalin et al., 2010, 

Li et al., 2015). DGLM is also a valid statistical model to identify genetic-controlling loci 

associated with phenotypic variability in chicken F2 crosses and in studies of human target gene 

expression levels (Rönnegård and Valdar, 2011, Hulse and Cai, 2013). We used DGLM to 

re-calculate significantly associated vSNPs as detected by Levene’s test, and found that most of 

the vSNPs (78%) still reach the same significant threshold. There was little overlap in loci 

detected in the vGWAS and previous GWAS (Li et al., 2013) for the same genome wide 

significant threshold, indicating that genetic variants influencing the mean and variance of 

oil-related trait are different. Thus, vGWAS is an effective tool to detect a novel set of genetic 

variants controlling the variance heterogeneity contributing to phenotype variation. The 79 unique 

vSNPs and corresponding 77 candidate genes identified by vGWAS had annotations of biological 

significance, uncovering the genetic architecture of oil biosynthesis. Further molecular biology 

experiments need to be carried out to verify the function mechanism of candidate genes affecting 

the phenotypic variance heterogeneity.

There are three different main genetic mechanisms causing stochasticity of a trait: Different 

alleles, structured LD between alleles at linked loci, and genetic interactions between loci. The last 

two could contribute to genetic variance heterogeneity as described in previous literatures (Shen et 

al., 2012, Ayroles et al., 2015, Ek et al., 2018). When we tested the genetic mechanism of 

variance heterogeneity in maize, we found that ~40% (32/79) of variance heterogeneity loci are 

driven by additional mean-effect linked to the vSNPs (Table 2; Supplementary Figure 3). Thus, 

the LD between vSNP and linked mean-effect SNP is one of the causes of the phenotypic variance 

heterogeneity; these results are consistent with those found in human GWAS studies (Ek et al., A
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2018). 

To illustrate, we consider an association example of two bi-allelic SNPs, where the vSNP is fixed 

for allele A and the linked independent mean-effect SNP is fixed for allele B. When the major 

vSNP allele (A+) is always combined with the major mean-effect SNP allele (B+) in the haplotype 

group, lines with the A+ allele have no haplotype variability at the vSNP. In contrast, lines 

carrying the A- allele can display two different haplotypes (A-B- and A-B+), each with different 

mean phenotypic values. This is the case we found with vSNP chr7.S_10514965 in our study, 

which has one vSNP allele (G-allele, corresponding to small phenotypic variance) in the major 

haplotype group, and the other allele (A-allele, corresponding to large phenotypic variance) in the 

two less frequent haplotypes. So, some of the variance heterogeneity is caused by the LD between 

one allele in the vSNP and the two alleles in the mean-effect SNPs; identifying these cases in 

traditional GWAS would be difficult except with prohibitively large panel sizes.

It’s worth noting that more than half of the vSNPs (17/32) associated with variance heterogeneity 

of oil concentration can be explained by more than one additional mean-effect SNP (Table 2). In 

such situations, the variance heterogeneity loci linked with additional mean-effect SNPs may 

contribute to narrow-sense heritability that is difficult to estimate using a traditional GWAS. Our 

results suggest that oil concentration, but not fatty acid compositional traits, is mainly inherited 

additively, which has also been observed in previous GWAS studies (Cook et al., 2012, Li et al., 

2013). 

The association 47 vSNP with the traits under study (including 45 associated with variance 

heterogeneity of fatty acid compositional traits) could not be explained by linked mean-effect 

SNPs, and were hypothesized to affect the oil related traits via gene x gene interactions. Under this 

scenario, 36 vSNPs were identified through the interacting effect of multiple SNPs to influence the 

final phenotypes (Supplementary Table 7), for a total of 132 vSNP-iSNP pairs (Supplementary 

Table 9). A previous review has neatly presented the connection between three different types A
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epistasis and the formation of genetic variance heterogeneity (Forsberg and Carlborg, 2017); two 

types of epistasis can be detected by vGWAS. Figure 6A illustrates one type of epistasis 

interaction between two loci, A and B, both of which have two alleles. In this theoretical example, 

only the A2B2 haplotype has a phenotypic effect (Forsberg and Carlborg, 2017). As a result, A and 

B loci affect both the mean and the variance of a quantitative trait and can be detected by 

conventional and vGWAS (Figure 6B). In our real data, SNP PZE-104040568 displayed C- and A- 

alleles and SNP chr4.S_142153507 displayed T- and A- alleles. Among the four haplotypes 

constructed by these two SNPs, only the A-A- haplotype (corresponding to A2B2 of the example) 

has an effect on the oil concentration phenotype (Figure 6C; Supplementary Table 9).

Another type of epistasis is shown in Figure 6D, where allele A2 capacitates the effect of locus B, 

which means that alleles B1 and B2 display phenotypic effects only when combined with allele A2 

of locus A. In this case, locus A might only be identified in genetic variance heterogeneity 

analysis, but locus B can be identified in a traditional GWAS for additive effects (Figure 6E) 

(Forsberg and Carlborg, 2017). Figure 6F shows four haplotypes for two interacting loci from our 

study (chr1.S_287706446 with T- and C- alleles corresponding to A1 and A2, and 

chr8.S_75602135 with C- and T- alleles corresponding to B1 and B2). The C-allele of 

chr1.S_287706446 displayed phenotypic effects when combined with both alleles of 

chr8.S_75602135 (examples of A2B1 and A2B2; Figure 6F; Supplementary Table 9). When we 

classified the 132 vSNP-iSNP pairs by interaction categories as per Figure 6, we found that 124 

fell into category I, and only 8 into category II (Supplementary Table 9). This clearly illustrates 

which kind of epistasis is important in fatty acid composition, and the value of vGWAS to 

interpret interactions between genetic variants. 

In summary, this study has shown that variance heterogeneity can be attributed to vSNPs, and they 

are as common as mean-effect SNPs influencing oil-related traits identified by GWAS in maize. 

Most vSNP associated with variance heterogeneity of oil concentration were explained by 

additional mean-effect SNPs. This finding validated the additive manner in which oil A
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concentration is inherited, and can be used to guide the selection of haplotypes for oil 

concentration improvement even in populations with low phenotypic variability for high-oil maize 

selection. However, gene x gene interaction plays a leading role in the formation of variance 

heterogeneity of fatty acid compositional traits. This explains a significant portion of the missing 

heritability and will allow a modification of breeding selection plans to achieve the most efficient 

manner of creating maize lines with the desired fatty acids. 

EXPERIMENTAL PROCEDURES

Genotype and phenotype data

The vGWAS was performed using an association mapping population including 368 inbred maize 

lines (Yang et al., 2011) that had been genotyped with two platforms: an RNA-seq analysis 

resulted in gene expression data for 28,769 annotated genes and a SNP array provided 550,000 

high quality SNPs with minor allele frequency (MAF) ≥ 0.05. These data were published 

previously (Fu et al., 2013, Li et al., 2013) and are available publicly 

(http://www.maizego.org/Resources.html). Oil concentration, the concentration levels of ten fatty 

acids, including palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0), oleic (C18:1), linoleic 

(C18:2), linolenic (C18:3), arachidic (C20:0), gadoleic (C20:1), behenic (C22:0) and lignoceric 

(C24:0) acids, the ratios between several of these fatty acids, including C16:0/C16:1, 

C16:0/C18:0, C18:0/C18:1, C18:1/C18:2, C18:2/C18:3, C18:0/C20:0, C20:0/C20:1, C20:0/C22:0, 

C22:0:C24:0, and the ratio between saturated fatty acid and unsaturated fatty acid, referring to 

SFA/USFA=C16:0+C18:0+C20:0+C22:0+C24:0)/(C16:1+C18:1+C18:2+C18:3+C20:1), led to a 

total of 21 traits measured on all 368 inbred lines as per (Li et al., 2013). 

vGWAS analysis

The vGWAS was performed using a two-step approach. In the first step, to correct for population 

stratification, the trait was fit in a linear mixed model with kinship matrix, which calculated by the 

polygenic function in the R-package GenABEL (Aulchenko et al., 2007), to get Grammar + 

residuals. In the second step, the variance-heterogeneity between the Grammar + residuals and A
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SNPs were tested using Levene’s test. And the Levene’s test is based on an ANOVA of the 

absolute deviation from the median and detailed information is described in previous studies (Shen 

et al., 2012).

We also re-calculate all the vSNPs found to be significant using the double generalized linear 

model (DGLM) for homogeneity of variance in the DGLM R-package ( Rönnegård and Valdar, 

2011, Hulse and Cai, 2013) as follows:

𝑦𝑖 = 𝜇+ 𝑥𝑖𝛽+ 𝑔𝑖𝛼+ 𝜀𝑖,𝜀𝑖~𝑁(0,𝜎2exp (𝑔𝑖𝜃))

where  indicates the phenotypic trait of the line i,  is the population structure,  is the SNP 𝑦𝑖 𝑥𝑖 𝑔𝑖

genotype,  is the residual with variance , and  is the corresponding vector of coefficients 𝜀𝑖 𝜎2 𝜃

of genotype  on the residual variance. 𝑔𝑖

Because of the strong LD among genome-wide SNPs, the number of independent SNPs were 

always used to assess the threshold for GWAS (Li et al., 2012; Yang et al., 2014). The parameters 

for independent maker determination have been reported in previous study using the same 

genotype data as us (Wang et al., 2016). Thus, the threshold was set to 1.0 × 10−5 (1/85,806) in 

present study. 

Phenotypic variation explained by multiple SNPs

We used the following model,  to calculate the proportion of the variance 𝑉𝑃 =  𝑉𝑀 + 𝑉𝑉 + 𝑉𝑅

heterogeneity-effect variance ( ) to the phenotypic variance ( ) (Hill and Mulder, 2010). In this 𝑉𝑉 𝑉𝑃

model,  is the mean-effect variance, and  is the environmental variance. For two given 𝑉𝑀 𝑉𝑅

homozygous genotypes in the population, , and the variance heterogeneity-effect 𝑉𝑀 = 𝑉𝐴 = 𝑝𝑞𝛼2

variance is, , where  and  are the frequencies for the two alleles and  and  𝑉𝑉 = 𝑝𝑞𝜙2 𝑝 𝑞 𝛼 𝜙

are the difference between the two homozygous genotypes in the mean and standard deviation, 

respectively.

Gene function annotation and GO enrichment analysis

We integrated two annotation resources, MaizeGDB (http://maizecyc.maizegdb.org) and InterPro A
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(http://www.ebi.ac.uk/interpro), to explore candidate gene functions (Zdobnov and Apweiler, 

2001, Lawrence et al., 2008). The agriGO v2  (http://bioinfo.cau.edu.cn/agriGO/) was performed 

to do GO enrichment analysis with SEA (Singular Enrichment Analysis) option (Blake, 2000, Du 

et al., 2010). The P values were adjusted for multiple testing by controlling FDR. 

Regional association analysis to identify mean-effect SNPs

For each significant vSNP, we performed association analysis to identify SNPs with mean effects 

on the target trait. First, only SNPs located on the same chromosome as the vSNP under study 

were considered. Then a mixed linear model controlling population structure and relative kinship 

was used to test for association between the target trait and the SNPs under consideration, in order 

to identify the mean-effect SNPs (Yu et al., 2006). If there were no significantly associated SNPs 

at P < 1.0 × 10−5 on the same chromosome, we defined the vSNP as without any mean-effect SNP. 

If significant mean-effect SNPs were found, we ran the vGWAS analysis again for each 

significant vSNP conditioning on each significant mean-effect SNP, and selected the primary SNP 

as the one with the greatest impact on P value of the vSNP. Thus, if an associated SNP, when used 

as covariate in the vGWAS analysis, increased the P value of the vSNP to larger than 1 × 10-5, it 

was defined as the primary mean-effect SNP. If the of P value of the vSNP after conditioning on 

the primary mean-effect SNP was still less than 1 × 10-5, another mean-effect SNP with the second 

impact on P value of vSNP, like the primary SNP, is added to the vGWAS as a covariate. If the P 

value of the vSNP after conditioning on the primary mean-effect SNP and second mean-effect 

SNP still be less than 1 × 10-5, it defined that this vSNP was still associated with variance 

heterogeneity of. If not, the second SNP also defined as mean-effect SNP.

Epistatic interactions

A two-stage method was used to identify interacting SNPs with each vSNP (Hulse and Cai, 2013). 

The inbred lines in association mapping panel were divided into two groups, L and S groups, 

based on genotypes of each vSNP, which were associated with large (L) and small (S) variances of 

target trait. Next, we performed a genome-wide scan to find SNPs via traditional GWAS with A
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mixed linear model using GWAS function in the rrBLUP R-library among lines of the L-group 

(Hulse and Cai, 2013).  

Sequence feature and phylogenetic analysis

The sequences alignment was performed using ClustalX software (Thompson et al.,1997). Base 

on the conserved domain sequences, a phylogenetic tree was constructed using MEGA7.1 by the 

Neighbor Joining (NJ) method with 1000 bootstrap replicates in p-distance model. 

Yeast two-hybrid assay

The ProQuest two-hybrid system (Invitrogen) was used in a yeast two-hybrid assay. The bait and 

prey plasmids were constructed by transferring the full length of ZmZF_RING_H2 and ZmActin-1, 

respectively. Then, the construct pairs were co-transformed into yeast strain MaV203. Y2H 

screening was performed according to the protocol described by Lee et al., 2014.

Bimolecular Fluorescence Complementation 

BiFC assays were performed as previously described (Waadt et al., 2010). The full-length cDNA 

of ZmZF_RING_H2 was subcloned into the pSPYNE(R) vector (YFPN), and the full-length cDNA 

of ZmActin-1 was subcloned into the pSPYCE (R) vector (YFPC). The plasmids were co-expressed 

in 5-week-old Nicotiana benthamiana leaf epidermis cells by Agrobacterium-mediated infiltration. 

YFP fluorescence was visualized with a confocal scanning microscope after infiltration for 72 h. 
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SUPPORTING INFORMATION

Supplementary Figure 1. Manhattan (left) and quantile-quantile (right) plots resulting from 

vGWAS of 21 maize kernel oil-related traits. The dashed horizontal line represents the 

genome-wide significant threshold (1.0 × 10−5). Oil, oil concentration; C16:0, palmitic acid; C16:1, 

palmitoleic acid; C18:0, stearic acid; C18:1, oleic acid; C18:2, linoleic acid; C18:3, linolenic acid; 

C20:0, arachidic acid; C20:1, gadoleic acid; C22:0, behenic acid; C24:0, lignoceric acid; SFA, 

saturated fatty acid; USFA, unsaturated fatty acid. 

Supplementary Figure 2. Violin figures of oil-related traits for the five loci having effects both on 

the mean and variance. Panels A-E indicate the five SNPs identified both by vGWAS and previous 

GWAS results (Li et al., 2013).

Supplementary Figure 3. Minor allele frequency (MAF) and linkage disequilibrium (LD) for 32 

vSNPs and additional linked mean-effect SNPs. (A) Pairwise MAF for vSNP and mean-effect 

SNP. (B) LD between each vSNP and corresponding mean-effect SNP.

Supplementary Figure 4. Violin figures of oil-related traits for the 31 vSNP with more than one 

mean-effect SNP.

Supplementary Figure 5. Sequence feature and phylogenetic analysis of GRMZM2G035341. (A) 

Amino acid sequence alignment of GRMZM2G035341, Bradi2g00640, AT5G20570, 

LOC_Os01g01700 and Glyma.12G100300. Characters highlighted with black indicate conserved A
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amino acids. (B) Phylogenetic analysis of GRMZM2G035341, Bradi2g00640, AT5G20570, 

LOC_Os01g01700 and Glyma.12G100300.  

Supplementary Table 1. Summary of vSNPs significantly associated with variance heterogeneity 

of oil-related traits at P < 1.0 × 10−5 and P < 1.8 × 10−6.   

Supplementary Table 2. List of possible additional candidate genes within a 100 kb flanking 

region of the 79 lead vSNPs identified as significantly (P < 1.0 × 10−5) associated with oil-related 

traits in this study.

Supplementary Table 3. Re-calculation the variance heterogeneity for 79 vSNP via double 

generalized linear model (DGLM).

Supplementary Table 4. Expression vQTL (evQTL) results for candidate genes identified by 

vGWAS in this study.

Supplementary Table 5. Correlation analysis between the trait phenotype and the expression of 

proposed candidate genes with evQTLs.

Supplementary Table 6. Nine vSNPs still associated with variance heterogeneity after adjusting 

for linked mean-effect SNPs.

Supplementary Table 7. Forty-seven vSNPs associated with variance heterogeneity which can’t be 

explained by additional linked mean-effect SNPs and the number of interacting SNPs for each 

vSNP.

Supplementary Table 8. Interacting gene pairs which were validated by protein-protein 

interactions as identified in protein-protein interaction database for maize.

Supplementary Table 9. 145 vSNP-iSNP interaction pairs and epistasis categories.
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FIGURE LEGENDS

Figure 1. Chromosome distributions for unique significant vSNPs. The blue and red vertical lines 

represent unique significant vSNP at P < 1.0 × 10−5 and P < 1.8 × 10−6, respectively. Oil, oil 

concentration; C16:0, palmitic acid; C16:1, palmitoleic acid; C18:0, stearic acid; C18:1, oleic acid; 

C18:2, linoleic acid; C18:3, linolenic acid; C20:0, arachidic acid; C20:1, gadoleic acid; C22:0, 

behenic acid; C24:0, lignoceric acid; SFA, saturated fatty acid; USFA, unsaturated fatty acid.

Figure 2. Correlation of P values and genetic contribution to phenotypic variance for loci 

identified by the vGWAS and GWAS. (A) Comparison of GC-corrected P values for 

genome-wide loci detected in previous GWAS results (Li et al., 2013) and present in the current 

vGWAS for all oil-related traits. The black dashed lines indicate the genome-wide significant 

threshold of 10-5. The red dots represent overlapping SNPs identified by both vGWAS and GWAS 

results. (B) Comparison of GC-corrected P values for 79 significant vSNP in vGWAS and GWAS 

results. The red dots represent vSNPs among 79 loci both having mean and variance effects. (C) 

Comparison of proportion of the phenotypic variance explained for 79 vSNP in vGWAS and 

GWAS.

Figure 3. Functional category annotations and their respective percentages (panel A) and GO 

analysis (panel B) for 77 unique candidate genes identified via vGWAS as significantly associated 

with the variance heterogeneity of oil related traits.                                                                                                                                                                                                                                                                                      

Figure 4. Associations and haplotype analysis of mean-effect SNPs and variance heterogeneity 

SNPs. (A) Top: The mean-effect SNP chr7.S_9794647 was associated with mean difference of oil 

concentration. Bottom, the blue triangle represents where the vSNP chr7.S_10514965 was 

associated with variance heterogeneity of oil concentration, and the red dot represents where the 

vSNP chr7.S_10514965 was no longer significantly associated with variance heterogeneity of oil 

concentration after adjusting for the mean-effect SNP chr7.S_9794647. (B) Top: Violin figure of 

oil concentration for vSNP chr7.S_10514965 with an effect on the variance. Bottom: Violin figure 

of oil concentration for the four different haplotypes. 

Figure 5. Interactions between GRMZM2G035341 and GRMZM2G152328 contributing to 

variable phenotype. (A) Individuals with chr8.S_8102492-TT genotype are further sorted by A
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chr5.S_10231102 into two subgenotype groups, which are associated with different C22:0/C24:0 

means. (B) Yeast two-hybrid assay. P22 or P32 plasmid containing GRMZM2G035341 and 

GRMZM2G152328 were transformed into yeast strain MAV203. P22, pEXP22; P32, pEXP32. L, 

Leucine; T, Threonine; U, Uracil; H, Histidine. WT (pEXP22/RalGDS-wt), m1 

(pEXP22/RalGDS-m1), and m2 (pEXP22/RalGDS-m2) are control plasmids displaying a strong, 

weak or undetectable interaction with pEXP32-Krev1, respectively. (C) BiFC assay in tobacco 

leaves co-transformed with GRMZM2G152328-PXN and GRMZM2G035341-PXC. PXN: YFP N 

terminal region, PXC: YFP C terminal region. Scale bar: 50 μm.

Figure 6. Theoretical and real examples illustrate two types of epistasis. Panels A and D are two 

theoretical examples of epistasis interacting between two loci (A and D).  Panels B and E are the 

theoretical phenotypic distributions corresponding to loci A and B. In B and E, the dark yellow fill 

represents individuals with one allele, the green fill represents individuals with the opposite allele. 

Panel C is the real example for a pairwise interaction between two SNPs (chr4.S_142153507 and 

SYN24171) affecting mean oil concentration. Panel F shows the real example for a pairwise 

interaction between two SNPs (chr8.S_75602135 and chr1.S_287706446) also affecting mean oil 

concentration.

TABLE LEGENDS

Table 1. vSNPs and linked candidate genes significantly (P < 1.0 × 10−5) associated with variance 

heterogeneity of 21 oil-related traits.

Table 2. P values for 32 vSNPs associated with variance heterogeneity after adjusting for the 

mean-effect SNPs.
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Table 1. vSN
Ps and linked candidate genes significantly (P < 1.0 × 10

−5) associated w
ith variance heterogeneity of 21 oil-related traits.
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A

uxin-responsive protein saur61

chr2.S_204388944
O

il
　

2
204388944

A
/C

0.15 
8.53E-07

10.66%
G

RM
ZM

2G
144180

Trans
D

uf538 fam
ily protein

chr2.S_204470447
O

il
　

2
204470447

A
/T

0.11 
8.39E-07

7.47%
G

RM
ZM

2G
163233

Trans
M

ale sterile32

chr2.S_224995610
C

16:0/C
18:0

2
224995610

C
/G

0.06 
9.09E-07

3.17%
G

RM
ZM

2G
082785

Trans
U

nknow
n

chr2.S_234229554
C

18:0/C
18:1

　
2

234229554
C

/G
0.07 

3.29E-06
3.01%

G
RM

ZM
2G

139467
Trans

C
ytochrom

e P450
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chr3.S_1852151
C

18:0/C
18:1

　
3

1852151
C

/G
0.07 

4.04E-06
2.92%

G
RM

ZM
2G

093104
Trans &

 C
is

A
ctivating signal cointegrator 1 com

plex subunit 

1

chr3.S_2876077
C

18:0/C
18:1

　
3

2876077
T/C

0.11 
2.04E-09

6.22%
G

RM
ZM

2G
068217

Trans
Ethylene insensitive 2

chr3.S_3887748
C

22:0/C
24:0

　
3

3887748
C

/G
0.06 

5.38E-06
5.28%

G
RM

ZM
2G

093278
Trans

Phospho-N
-acetylm

uram
oyl-pentapeptide-transfe

rase hom
olog，

catalyse

chr3.S_5568273
C

18:1
　

3
5568273

C
/G

0.30 
8.59E-06

2.92%
G

RM
ZM

2G
143235

Trans
C

ytochrom
e P450

chr3.S_5580332
C

20:0/C
22:0

　
3

5580332
A

/G
0.33 

5.50E-06
4.80%

G
RM

ZM
2G

143235
Trans

C
ytochrom

e P450

chr3.S_8535639
C

22:0/C
24:0

　
3

8535639
A

/G
0.05 

1.83E-06
9.62%

G
RM

ZM
2G

353444
Trans

Phospholipase A
1

chr3.S_9950783
C

18:2/C
18:3

　
3

9950783
A

/G
0.17 

4.29E-06
5.74%

G
RM

ZM
2G

100260
Trans

D
-Tyr-Trunknow

n(Tyr) deacylase fam
ily protein

vSN
P

Lead trait a
O

ther trait b
C

hr.
Position

c
A

lleles d
M

A
F

e
P

f
V

v/V
p

g
G

ene_Id
h

evQ
TL type

i
Function description

j

chr3.S_32410225
C

18:0/C
18:1

　
3

32410225
A

/C
0.09 

2.07E-07
3.69%

G
RM

ZM
2G

081719
N

S
N

on-specific phospholipase C
6

chr3.S_35663463
C

16:0/C
16:1

　
3

35663463
A

/G
0.18 

7.41E-06
2.89%

G
RM

ZM
2G

091119
Trans

Im
portin subunit alpha

chr3.S_36226527
C

18:0/C
20:0

　
3

36226527
A

/G
0.40 

8.40E-06
3.73%

G
RM

ZM
2G

161658
Trans

Epoxide hydrolase 2

chr3.S_130093718
C

22:0/C
24:0

　
3

130093718
T/C

0.07 
9.73E-06

7.35%
G

RM
ZM

2G
022298

Trans
F-B

ox ham
ily protein

SY
N

24171
O

il
　

3
135285424

A
/G

0.15 
5.82E-07

9.77%
G

RM
ZM

2G
004988

Trans
Transcription coactivator activity 

chr3.S_161573977
O

il
C

18:2/C
18:3

3
161573977

A
/G

0.11 
3.54E-06

7.37%
G

RM
ZM

2G
145346

Trans
U

nknow
n

chr3.S_166690078
O

il
　

3
166690078

A
/T

0.09 
4.86E-06

5.94%
G

RM
ZM

2G
176542

Trans
Sn1-specific diacylglycerol lipase 
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chr3.S_169316286
C

20:0/C
20:1

　
3

169316286
T/C

0.14 
5.71E-06

3.58%
G

RM
ZM

2G
346342

N
S

M
itogen-activated protein kinase  

9

chr3.S_221918315
O

il
　

3
221918315

T/C
0.12 

1.04E-06
7.60%

G
RM

ZM
2G

111123
N

S
B

3 D
om

ain-C
ontaining Protein

chr3.S_224499613
C

16:0/C
16:1

　
3

224499613
A

/C
0.08 

2.03E-06
2.85%

G
RM

ZM
2G

137961
Trans

A
cyl-C

oA
 N

-acyltransferases superfam
ily protein

chr3.S_232019079
C

16:0/C
16:1

　
3

232019079
A

/G
0.12 

3.64E-06
3.27%

G
RM

ZM
2G

060811
Trans

U
nknow

n

chr4.S_2663528
C

18:0/C
18:1

　
4

2663528
A

/C
0.12 

7.36E-06
2.89%

G
RM

ZM
2G

106389
Trans

C
ysteine-rich receptor-like protein kinase 8

chr4.S_6601726
O

il
　

4
6601726

A
/G

0.13 
5.99E-06

7.04%
G

RM
ZM

2G
133675

Trans
Transcription factor bH

LH
47

PZE-104040568
O

il
　

4
54552245

A
/C

0.13 
4.62E-06

7.87%
G

RM
ZM

2G
098496

Trans
N

SF attachm
ent protein involved in vesicular 

transport 

chr4.S_132404834
O

il
4

132404834
T/C

0.13 
5.35E-06

8.21%
G

RM
ZM

5G
868917

Trans
U

nknow
n

chr4.S_178042468
C

22:0/C
24:0

4
178042468

T/G
0.09 

5.06E-06
8.64%

G
RM

ZM
2G

158811
Trans &

 C
is

U
nknow

n

chr4.S_205809330
C

16:1
4

205809330
A

/G
0.06 

7.25E-06
4.20%

G
RM

ZM
2G

103013
Trans

U
nknow

n

chr4.S_224911511
O

il
4

224911511
A

/G
0.08 

1.53E-06
7.04%

G
RM

ZM
2G

048733
Trans

A
bscisic acid receptor PY

L9

chr4.S_228013669
O

il
4

228013669
T/C

0.12 
2.95E-06

6.96%
G

RM
ZM

2G
092321

Trans
U

nknow
n

chr4.S_229539871
SFA

/U
SFA

　
4

229539871
A

/C
0.16 

3.75E-06
2.35%

G
RM

ZM
2G

040452
Trans &

 C
is

Pyruvate dehydrogenase phosphatase (PD
PC

)
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chr5.S_1491470
C

22:0/C
24:0

　
5

1491470
A

/T
0.07 

7.82E-06
4.60%

G
RM

ZM
2G

125271
Trans

R
ibosom

al Protein S4

vSN
P

Lead trait a
O

ther trait b
C

hr.
Position

c
A

lleles d
M

A
F

e
P

f
V

v/V
p

g
G

ene_Id
h

evQ
TL type

i
Function description

j

chr5.S_17891972
O

il
　

5
17891972

C
/G

0.16 
4.90E-06

8.85%
AC

194158.3_FG
005

Trans
Fatty acid synthase

PZE-105079733
C

18:0/C
18:1

　
5

91265684
A

/C
0.12 

9.02E-06
2.37%

G
RM

ZM
2G

119571
Trans

A
utophagy-related protein 11

chr5.S_138158699
C

16:1
　

5
138158699

A
/G

0.09 
1.88E-06

4.59%
G

RM
ZM

2G
109315

Trans
V

acuolar protein sorting-associated protein 29

PZE-105128434
C

20:0/C
22:0

　
5

185645899
A

/G
0.34 

5.45E-06
4.94%

G
RM

ZM
2G

075255
Trans

Fatty acid hydroxylase

chr6.S_73204004
C

18:2/C
18:3

　
6

73204004
A

/G
0.09 

3.80E-06
5.58%

G
RM

ZM
2G

062638
Trans

A
TP-dependent peptidases

chr6.S_104862142
O

il
　

6
104862142

A
/G

0.13 
4.00E-06

5.44%
G

RM
ZM

2G
169089

Trans
D

G
A

T1-2

chr6.S_104865747
C

20:0/C
22:0

　
6

104865747
A

/C
0.24 

9.64E-06
5.16%

G
RM

ZM
2G

169089
Trans

D
G

A
T1-2

chr6.S_138872466
C

24:0
　

6
138872466

A
/G

0.50 
6.60E-07

3.25%
G

RM
ZM

2G
069713

Trans
Probable protein phosphatase 2C

 73

chr6.S_141864218
C

22:0/C
24:0

　
6

141864218
A

/G
0.08 

2.20E-06
9.09%

G
RM

ZM
2G

023105
Trans

Putative V
H

S/G
A

T dom
ain containing fam

ily 

protein

chr7.S_10514965
O

il
　

7
10514965

A
/G

0.09 
9.90E-06

6.32%
G

RM
ZM

2G
066290

Trans
Pyruvate kinase

chr7.S_145764735
C

20:0/C
20:1

　
7

145764735
C

/G
0.08 

6.49E-06
5.42%

G
RM

ZM
2G

006416
Trans

Probable Protein Phosphatase 2C
 21

chr7.S_173072186
C

22:0/C
24:0

　
7

173072186
T/G

0.29 
4.18E-06

8.35%
G

RM
ZM

5G
890815

Trans
U

nknow
n

chr8.S_1145487
C

16:0
　

8
1145487

A
/G

0.05 
1.74E-06

3.03%
G

RM
ZM

2G
063244

Trans
Peptidyl-prolyl cis-trans isom

erase

chr8.S_8102492
C

22:0/C
24:0

　
8

8102492
A

/T
0.11 

4.92E-06
5.61%

G
RM

ZM
2G

035341
Trans

R
ing-box protein 1A
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chr8.S_8615756
C

22:0/C
24:0

　
8

8615756
T/C

0.06 
5.58E-06

9.82%
G

RM
ZM

2G
098015

Trans
U

nknow
n

chr8.S_9901457
C

16:0/C
16:1

　
8

9901457
A

/G
0.07 

1.10E-06
3.11%

G
RM

ZM
2G

095757
Trans

C
D

P-diacylglycerol--serine 

O
-phosphatidyltransferase 1

chr8.S_17422251
C

18:1/C
18:2

　
8

17422251
C

/G
0.06 

1.99E-06
5.02%

G
RM

ZM
2G

061969
Trans

Phospholipase D
2

chr8.S_66989244
O

il
　

8
66989244

A
/G

0.11 
1.50E-06

6.72%
G

RM
ZM

2G
156606

Trans
D

uf1639 Fam
ily Protein

chr8.S_111626169
C

20:0/C
22:0

　
8

111626169
T/C

0.10 
7.36E-06

3.46%
G

RM
ZM

2G
416308

Trans
Proline-rich receptor-like protein kinase PER

K
1

chr8.S_153259338
C

18:2/C
18:3

　
8

153259338
A

/G
0.15 

4.96E-06
6.51%

G
RM

ZM
2G

157043
Trans

C
R

A
L-TR

IO
 lipid binding dom

ain

chr8.S_153413361
C

18:2/C
18:3

　
8

153413361
T/G

0.14 
9.06E-06

6.49%
G

RM
ZM

2G
469901

Trans &
 C

is
U

nknow
n

chr8.S_155978664
O

il
　

8
155978664

T/C
0.13 

6.95E-06
6.67%

G
RM

ZM
2G

107570
Trans

O
il B

ody-A
ssociated Protein

chr8.S_161745997
C

24:0
　

8
161745997

T/C
0.36 

5.01E-06
3.69%

G
RM

ZM
2G

180335
Trans

D
ynam

in-related protein 3A

vSN
P

Lead trait a
O

ther trait b
C

hr.
Position

c
A

lleles d
M

A
F

e
P

f
V

v/V
p

g
G

ene_Id
h

evQ
TL type

i
Function description

j

chr8.S_166782652
C

18:2
　

8
166782652

T/C
0.36 

8.97E-06
2.40%

G
RM

ZM
5G

805609
Trans &

 C
is

G
lucan endo-13-beta-glucosidase 14

chr8.S_170708353
C

20:0
　

8
170708353

A
/G

0.09 
3.04E-06

4.06%
G

RM
ZM

5G
805026

Trans
W

uschel-related hom
eobox 13

chr9.S_17668908
C

18:1/C
18:2

　
9

17668908
C

/G
0.14 

5.15E-06
6.35%

G
RM

ZM
2G

071249
Trans

Lipase

chr9.S_103956920
C

16:0
　

9
103956920

T/C
0.16 

1.94E-06
3.72%

G
RM

ZM
2G

054093
Trans

U
nknow

n

chr9.S_140343507
C

20:0/C
20:1

　
9

140343507
T/C

0.09 
2.34E-07

5.61%
G

RM
ZM

2G
179336

Trans &
 C

is
D

uf3527 dom
ain protein

chr9.S_141480266
C

20:0/C
20:1

　
9

141480266
T/G

0.06 
3.02E-06

4.97%
G

RM
ZM

2G
146386

Trans &
 C

is
ER

A
D

-associated E3 ubiquitin-protein ligase 
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com
ponent H

R
D

3A

chr9.S_146459251
C

18:1
C

18:2, 

C
18:1/C

18:2
9

146459251
A

/G
0.16 

1.77E-06
3.01%

G
RM

ZM
2G

024718
Trans

H
eat shock 70 kD

a protein 8

chr9.S_153916991
C

22:0/C
24:0

　
9

153916991
A

/C
0.04 

1.92E-06
11.03%

G
RM

ZM
2G

116681
Trans

TH
O

 com
plex subunit 7B

chr10.S_16212078
O

il
　

10
16212078

A
/G

0.09 
1.65E-06

5.82%
G

RM
ZM

2G
181251

Trans
Transcription factor binding

chr10.S_24577806
O

il
　

10
24577806

C
/G

0.10 
4.22E-06

5.90%
G

RM
ZM

2G
153206

Trans
R

apid A
Lkalinization Factor

chr10.S_26138064
C

18:0/C
18:1

　
10

26138064
A

/T
0.22 

7.40E-06
4.18%

G
RM

ZM
2G

129457
Trans

D
N

A
-directed R

N
A

 polym
erases

chr10.S_147448589
C

22:0/C
24:0

　
10

147448589
T/C

0.09 
9.63E-07

8.82%
G

RM
ZM

2G
464157

Trans &
 C

is
Phospholipase

chr10.S_148232465
C

16:1
　

10
148232465

T/C
0.31 

4.02E-06
3.66%

G
RM

ZM
2G

008714
N

S
Pyruvate kinase

aThe oil trait associated w
ith the highest P value am

ong 21 oil-related traits. bA
dditional oil traits associated at P < 1×10

-5. cPosition in base pairs of the 

vSN
P according to version 5b.60 of the m

aize reference sequence (http://ensem
bl.gram

ene.org/Zea_m
ays/Info/Index). d M

inor allele/M
ajor allele. eM

inor allele 

frequency (M
A

F) for vSN
P in this association m

apping population. fP probability of vSN
P associated w

ith variance heterogeneity of the lead trait. gVv is the 

variance due to heterogeneity betw
een genotypes, and Vp is the phenotypic variance accounted for. hG

ene identification of a plausible biological candidate gene in 

the locus or the nearest annotated gene to the lead vSN
P according to version 5b.60 of the m

aize reference sequence (M
aizeSequence, see U

R
Ls). ievQ

TL type C
is 

indicates that SN
Ps located w

ithin 100 kb region (50 kb upstream
 and dow

nstream
) of the candidate gene are significantly associated w

ith the gene expression 

variance heterogeneity of this gene; Trans indicates that SN
Ps located outside the 100 kb region of the candidate gene are significantly associated w

ith the gene 

expression 
variance 

heterogeneity 
of 

this 
gene; 

N
S, 

not 
significant 

(P 
>1.0×10

−5). 
jEach 

candidate 
gene 

is 
annotated 

according 
to 

InterProScan 
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(http://w
w

w
.ebi.ac.uk/interpro/). 

Table 2. P values for 32 vSN
Ps associated w

ith variance heterogeneity after adjusting for the m
ean-effect SN

Ps.

Trait
vSN

P
M

ean-effect SN
P

a
M

ean-effect 

SN
P_M

A
F

b
-log

10 [P
(dispersion) _before] c

-log
10 [P

(dispersion) _after] d
-log

10 [P
(dispersion) _difference] e

-log
10 P_m

ean
f

O
il

chr1.S_53423512
chr1.S_55071145

0.09
5.31 

2.01 
3.30 

5.88 

C
18:0/C

18:1
chr2.S_144072332

chr2.S_43185558
0.13

5.25 
3.96 

1.28 
5.03 

O
il

chr2.S_204388944
chr2.S_149517635

0.06
6.07 

2.43 
3.64 

6.33 

O
il

chr2.S_204470447
chr2.S_149517635

0.06
6.08 

2.36 
3.72 

5.23 

O
il

chr3.S_161573977
chr3.S_178136002

0.07
5.46 

1.60 
3.86 

6.07 

O
il

chr3.S_166690078
chr3.S_167431166

0.08
5.31 

1.58 
3.73 

5.95 

C
20:0/C

20:1
chr3.S_169316286

chr3.S_9862488
0.46

5.24 
3.40 

1.84 
5.10 

C
18:0/C

18:1
chr3.S_1852151

chr3.S_158895417
0.08

5.39 
3.79 

1.61 
6.45 

O
il

chr3.S_221918315
chr3.S_166664152

0.07
5.98 

1.73 
4.25 

6.34 

C
18:0/C

18:1
chr3.S_32410225

chr3.S_156963535
0.06

6.68 
5.24 

1.45 
6.26 

C
18:1

chr3.S_5568273
chr3.S_1552666

0.07
5.07 

3.30 
1.77 

5.07 

O
il

chr4.S_132404834
chr4.S_236185943

0.06
5.27 

1.30 
3.97 

8.93 
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O
il

chr4.S_224911511
chr4.S_6601732

0.07
5.82 

1.19 
4.63 

6.74 

O
il

chr4.S_228013669
chr4.S_236185943

0.06
5.53 

1.51 
4.02 

8.93 

SFA
/U

SFA
chr4.S_229539871

chr4.S_191765041
0.49

5.43 
3.90 

1.52 
6.18 

C
18:0/C

18:1
chr4.S_2663528

chr4.S_162256670
0.46

5.13 
3.31 

1.82 
5.05 

O
il

chr4.S_6601726
chr4.S_6601732

0.06
5.22 

2.01 
3.21 

8.93 

O
il

chr5.S_17891972
chr5.S_15800012

0.06
5.31 

1.72 
3.59 

12.42 

O
il

chr6.S_104862142
chr6.S_104848924

0.10
5.40 

3.15 
2.25 

11.75 

C
20:0/C

22:0
chr6.S_104865747

chr6.S_104858442
0.15

5.02 
2.86 

2.16 
19.67 

C
24:0

chr6.S_138872466
chr6.S_104865691

0.17
6.18 

4.80 
1.38 

9.39 

O
il

chr7.S_10514965
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