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Abstract: In recent years, deep learning has been widely used in diverse fields of research, such as speech 
recognition, image classification, autonomous driving and natural language processing. Deep learning has 
showcased dramatically improved performance in complex classification and regression problems, where the 
intricate structure in the high-dimensional data is difficult to discover using conventional machine learning 
algorithms. In biology, applications of deep learning are gaining increasing popularity in predicting the structure 
and function of genomic elements, such as promoters, enhancers, or gene expression levels. In this review paper, 
we describe the basic concepts in machine learning and artificial neural network, followed by elaboration on the 
workflow of using convolutional neural network in genomics. Then we provide a concise introduction of deep 
learning applications in genomics and synthetic biology at the levels of DNA, RNA and protein. Finally, we discuss 
the current challenges and future perspectives of deep learning in genomics. 
 
Keywords: Deep learning; genomics; convolutional neural network 

1. Introduction 

Artificial intelligence (AI) powers many aspects of modern society, from traditional industries (agriculture, 
industry, transportation, etc) to modern industries (education, culture, catering, tourism, etc), and it continues to 
transform more and more sectors. As the core technology in artificial intelligence, machine learning studies the  
algorithms that computer systems utilize to perform tasks by learning from data instead of following explicit 
instructions. Despite their extensive applications, conventional machine learning techniques are limited in their 
capability to process natural data in their raw forms and learn intricate patterns in complex dataset. Compared to 
conventional machine learning algorithms, deep neural network stands out with the ability of automatic feature 
extraction and greater data representation capability in dealing with high-dimensional datasets. This method has 
gained dramatically improved performance compared to the state-of-the-art in dealing with the complex 
classification and regression tasks, such as speech recognition, image classification, autonomous driving and 
natural language processing (Hinton et al., 2006; LeCun et al., 2015). Meanwhile, deep learning has also been used 
in the field of genomics such as functional annotation of biological sequences (Ritchie et al. 2015; Libbrecht et al., 
2015; Camacho et al., 2018). There have been many beautiful reviews summarizing recent progresses in this area, 
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including Park et al., 2015; Angermueller et al., 2016; Mamoshina et al., 2016; Min et al., 2017; Ching et al., 2018; 
Wainberg et al., 2018; Webb, 2018; Yue et al., 2018; Zou et al., 2019; Wang et al., 2020, etc. Among them, 
Angermueller et al. mainly discuss applications of deep learning in regulatory genomics and cellular imaging 
(Angermueller et al., 2016). Min et al. present the current research work of using deep learning in omics, 
biomedical imaging and biomedical signal processing (Min et al., 2017). Ching et al. mainly discuss the 
applications of deep learning in predicting enhancer, promoter, interactions among genomic elements, splicing of 
transcripts, de novo drug design, as well as text mining in healthcare and electronic health records (Ching et al., 
2018). Zou et al. mainly concentrate on the application of deep learning in the fields of regulatory genomics, 
variant calling and pathogenicity scores, and it also provides a practical guide to tools and resources in deep 
learning (Zou et al., 2019). Wang et al. mainly describe the flow of information from genomic DNA sequences to 
molecular phenotypes and how to prioritize functional variants in natural populations using deep learning models 
(Wang et al., 2020). 

Besides the fast development and applications of deep learning algorithms, the size of biological datasets has 
grown exponentially. Advanced sequencing technologies enable faster genome sequencing and assembly at reduced 
costs, and the assembled genomes can be automatically annotated with high-throughput techniques. With 
unprecedentedly large amount of biological data, modeling the functions of genomic elements becomes 
increasingly crucial. First, experimentally unravelling important genomic elements for every sequenced genome is 
unfeasible. Instead, it is more economical to build deep learning models that predict functional genomic elements in 
well-studied genomes, and apply these models in less well-studied genomes. Second, rather than experimentally 
determining the phenotypic effects of natural variants, deep learning models can be used to predict variants with 
desirable functions for downstream crop improvement. Last, interpretation of the above-mentioned models 
provides novel insights for the biological processes being studied. 

Although existing reviews summarize recent progress of deep learning in genomics, an in-depth analysis of 
deep learning in plant and animal breeding is still lacking. In addition, application of generative models in synthetic 
biology is rarely mentioned in previous reviews. Here, we firstly discuss concepts and processes in machine 
learning and the popular deep learning methods. Then we describe common steps in sequence analysis by 
convolutional neural networks. We then focus on the applications of different deep learning methods in the research 
related to DNA (enhancer, promoter, non-coding DNA, TSS, methylation states, replication domains, cis-regulatory 
region, lab-of-origin of DNA, interaction), RNA (alternative splicing, lncRNA, MicroRNA, messenger RNA, 
expression), and protein (transcription factor, DNA binding proteins, RNA binding proteins). We also describe the 
applications of deep generative models to generate functional elements (DNA sequence, promoter sequence, protein 
sequence, single-cell RNA-seq data, Hi-C data). Finally, we discuss the caveats and future perspectives of 
exploiting deep learning in genomic research as well as plant and animal breeding. Overall, the goal of this article 
is to summarize recent progress in this field, organize useful recourses in different categories, provide valuable 
insights to facilitate the application of deep learning in genomic studies, and hopefully point out promising 
directions of further research in this area. 

2. Machine Learning and Deep Learning 

2.1 Machine learning 

Machine learning algorithms are usually categorized as supervised learning, unsupervised learning and 
semi-supervised learning. The most common form of machine learning is supervised learning, where each example 
in the data set is labeled. The machine is expected to learn the mapping from the input to output during the training 
process and be able to produce sensible prediction on new data. For example, an image classification machine 

Acce
pte

d

 http://engine.scichina.com/doi/10.1007/s11427-020-1804-5



 3 

learning system should be able to classify an unseen image to its category after being trained over hundreds of 
millions of labeled images, as shown in Figure 1 (Krizhevsky et al., 2009). In genomics, we can use supervised 
learning to predict gene expression levels, population structure and so on (Krogel et al., 2004). In contrast, in 
unsupervised learning, examples in the data set are without pre-existing labels. The learning algorithm is supposed 
to properly group data examples by learning the function that minimizes the intra-group gap and maximizes 
inter-group gap. Two of the main methods used in unsupervised learning are principle component analysis (PCA) 
and clustering analysis (Bowden et al., 1997), both of which are widely used in transcriptomic analysis over 
RNA-Seq datasets (Kiselev et al., 2019). Semi-supervised learning falls between supervised and unsupervised 
learning, as it generates appropriate functions by learning from both labeled and unlabeled data. 

2.2 A typical workflow of a machine learning system 

A typical workflow in a machine learning system generally includes six steps: data collection, data 
preprocessing, model training, model evaluation, model usage and model interpretation. The typical process of 
machine learning systems is shown in Figure 2. 

2.3 Deep learning 

Deep learning is a machine learning technique that has recently made major breakthroughs in solving 
problems that have resisted the best efforts in the artificial intelligence community for many years (LeCun et al., 
2015). Deep learning essentially refers to deep neural network architecture, which consists of an input layer, many 
hidden layers and an output layer. The multilayer architecture of deep neural network mimics the structure in visual 
neuroscience and is able to transform the data representation in an increasingly abstract form via non-linear 
modules. It turns out to be surprisingly successful in learning the non-linear input-output mapping with both 
increased selectivity and the invariance of the representation. The automatic feature extracting ability with high 
selectivity and invariance is the key advantage of deep learning.   

At present, the following neural network methods have been widely used in genomics: Boltzmann machine 
(BM), autoencoder (AE), deep belief network (DBN), recurrent neural network (RNN), long short-term memory  
(LSTM), convolutional neural network (CNN), etc. The architecture of these methods is described in the 
Supplementary materials (Supplementary materials.docx). Until now, the convolutional neural network (CNN) is 
the most commonly used deep learning model in genomics. The detailed execution process of CNN applied in 
genome research is shown in Figure 3. One-hot encoding, in which the four nucleotides (A, C, G, and T) are 
encoded as their corresponding vectors ([1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1]), is commonly used to convert 
DNA sequences to matrices which serve as inputs for deep learning models. 

3. Deep Learning for Genomics 

Genomics mainly studies the structure, function, evolution and editing of genomes at the systems level, while 
at the molecular level, we follow the central dogma of molecular biology to study and characterize the functions of 
individual molecule in a fine-grained manner. The central dogma of molecular biology refers to the process that 
genetic information is transferred from DNA to RNA, and then from RNA to protein, that is, to complete the 
transcription and translation of genetic information (Crick, 1970). Thanks to tremendous advance in high 
throughput technologies, omics data at all levels of central dogma become available. With the unprecedentedly 
large amount of omics data, we are probably in the best era to apply machine learning and deep learning at all 
levels of biological systems (Figure 4). 

Acce
pte

d

 http://engine.scichina.com/doi/10.1007/s11427-020-1804-5



 4 

3.1 Deep learning at the DNA level 

3.1.1 Promoter 

Promoter is a segment of DNA sequence typically located upstream of the transcription start sites of genes 
(Busby et al., 1994). RNA polymerase and accessory factors recognize and bind to promoters to start transcription. 
Importantly, conservative sequences within promoters play critical roles in specific binding and transcription 
initiation by RNA polymerase, therefore accurate prediction of promoters is crucial for interpreting gene expression 
patterns and understanding genetic regulatory networks. Kh et al. applied CNN to construct prediction models to 
analyze sequence characteristics of promoters in several prokaryotic and eukaryotic organisms, including human, 
mouse, plant (Arabidopsis) and bacteria (Escherichia coli and Bacillus subtilis). Experiment results demonstrate 
that deep learning method can predict complex promoter sequence and have significantly higher accuracy 
compared to previous promoter prediction methods (Kh et al., 2017). In addition, Basset is a framework of CNN 
that learns the functional activity of DNA sequences from genomics data. It applies SGD to learn all model 
parameters, and computes loss and gain scores for every nucleotide. Basset learns the relevant sequence motifs and 
the regulatory logic to collectively determine cell-specific DNA accessibility. As claimed by the authors, 
researchers could benefit from using this framework to understand chromatin accessibility code and annotate every 
mutation in the genome with its influence on present or potential accessibility (Kelley et al., 2016). 

Cis-regulatory elements are distributed mainly in noncoding regions of a genome and are involved in the 
regulation of gene expression. Li et al. introduced a supervised deep learning approach to identify active 
cis-regulatory regions (CRRs) across the human genome, and delineated locations of 300,000 candidate enhancers 
and 26,000 candidate promoters genome-wide (Li et al., 2018). In the light of the fact that determining the origin of 
DNA sequence is difficult and time-consuming, Nielsen et al. used CNN to predict the lab-of-origin of a DNA 
sequence. It turns out that this approach can be extended to unravel sequences of malicious intent (Nielsen et al., 
2018).  

3.1.2 Enhancer 

Enhancers are small DNA segments remotely located upstream or downstream of coding regions but could 
greatly enhance gene expression level via binding to gene transcription machinery (Khoury et al., 1983). DEEP is 
the first enhancer prediction framework using neural network. The method firstly trains support vector machines 
(SVM) models using different subsets of the original data, then aggregates decisions and uses artificial neural 
network (ANN) to derive the final prediction (Kleftogiannis et al., 2015). Min et al. proposed a computational 
framework of CNN named DeepEnhancer to distinguish enhancers from genomic sequences. Experimental results 
show that DeepEnhancer has superior efficiency and effectiveness compared to traditional sequence-based 
classifiers (Min et al., 2016). Liu et al. developed a deep learning based algorithmic framework (PEDLA) to predict 
enhancers from massively heterogeneous datasets. PEDLA can learn from massively heterogeneous data to fully 
capture universal patterns of enhancers. It also generalize enhancer predictions in ways that are mostly consistent 
across various cell types/tissues (Liu et al., 2016). BiRen is another method to predict enhancers using a deep 
learning-based hybrid structure that is trained with limited experimentally validated noncoding elements. The 
hybrid model integrates CNN with bidirectional recurrent neural network (BRNN). It makes full use of the power 
of CNN in sequence encoding and representation, as well as the superior capacity of gated recurrent unit-based 
bidirectional recurrent neural network (GRU-BRNN) for handling the long-term dependencies in long DNA 
sequences (Yang et al., 2017). 

3.1.3 Non-coding region 

Noncoding DNA refers to the sequence that does not encode proteins but plays important roles in regulating 
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various biological processes, such as gene expression, translation, DNA replication and others (Andolfatto, 2005). 
DanQ is a hybrid framework combining CNN and bi-directional long short-term memory recurrent neural network 
(BLSTM) to predict non-coding function de novo from sequence. DanQ learns a regulatory grammar to improve 
predictions, and provides novel insights into non-coding genomic regions (Quang et al., 2016). In another research, 
Zhou et al. developed a deep learning-based framework (DeepSEA) to predict the noncoding-variant effects de 
novo from sequence. It calculates functional significance scores based on chromatin effect predictions and the 
evolutionary information-derived scores. DeepSEA directly learns the regulatory sequence code from large-scale 
chromatin-profiling data, and predicts chromatin effects of sequence alterations with single-nucleotide sensitivity. 
DeepSEA is the first approach for prioritization of functional variants using de novo regulatory sequence 
information (Zhou et al., 2015). Later, Zhou et al. used deep-learning-based framework (ASDbrowser) to predict 
the specific regulatory effects and the deleterious impact of genetic variants, and detect contribution of noncoding 
mutations to disease. ASDbrowser uses the interactions between DNA binding proteins or RNA binding proteins 
and their targets as the training dataset. This work demonstrates for the first time the important role of 
proband-specific signal in regulatory noncoding region (Zhou et al., 2019).  

3.1.4 Interactions between genomic elements 

Predicting enhancer-promoter interactions helps us understand how the genome regulates complex cellular 
functions in a living organism. SPEID is a deep learning model that predicts enhancer-promoter interactions solely 
based on sequence features, such as locations of putative enhancers and promoters in a particular cell type. 
Experiment results show that SPEID more accurately predicts the enhancer-promoter interactions compared to 
state-of-the-art methods that use non-sequence features extracted from functional genomic signals. It is the first 
report that uses sequence-based features alone to predict genome-wide enhancer-promoter interactions (Singh et al., 
2016). Yuan et al. developed CNNC method to mine gene-gene relationship by learning from single-cell expression 
data. CNNC can improve upon prior methods in tasks ranging from predicting transcription factor targets to 
identifying disease related genes (Yuan et al., 2019). In addition, Huang et al. proposed an end-to-end prediction 
model called GCLMI to predict lncRNA-miRNA interactions by combining graph convolution and auto-encoder 
(Huang et al., 2019). 

3.1.5 Other domains 

Based on the gene annotations in one species, CNN can predict the annotations in a different species if the 
mechanisms of interpreting the genomes are conserved in the two species. As an example, Khodabandelou et al. 
used CNN to predict the transcription start sites (TSS) across genomes (DeepTSS). The ratio between positive and 
negative examples was optimized to obtain the highest prediction scores to identify TSS (Khodabandelou et al., 
2018). Besides, Eser et al. introduced an open source data-agnostic flexible integrative deep learning framework 
(FIDDLE), which learns an unified representation from multiple data types to infer other data types. This 
framework demonstrates that one data type could be inferred from other sources of data types without manually 
specifying the relevant features or dataset preprocessing. As a case study, the authors used multiple Saccharomyces 
cerevisiae genomic datasets to predict TSS through the simulation of TSS-seq data (Eser et al., 2016).  

DNA methylation has important impact on chromatin structure, cell differentiation, cancer progression, DNA 
stability, DNA conformation and interactions between DNA and proteins, and gene expression. Angermueller et al. 
used deep neural network to predict single-cell methylation states and model the sources of DNA methylation 
variability (DeepCpG). DeepCpG uncovers both previously known and de novo sequence motifs that are associated 
with methylation changes and methylation variability between cells (Angermueller et al., 2017). In another research, 
Wang et al. applied stacked denoising autoencoder deep learning algorithm to predict DNA methylation status of 
CpG sites. This algorithm uses two stages to train the model: an unsupervised pre-training stage using unlabeled 
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training data and a supervised fine-tuning stage using labeled data (Wang et al., 2016). 
DNA replication refers to the process of synthesizing offspring DNA using parent DNA as templates. Liu et al. 

developed a novel hybrid architecture (DNN-HMM) combining deep neural network and hidden Markov model for 
de novo identification of replication domains(Liu et al., 2016). DNN-HMM uses the posterior probabilities of states 
as the output of DNN, and experiment results demonstrate that DNN-HMM significantly outperforms existing 
methods. 

3.2 Deep learning at the RNA level 

3.2.1 Splicing 

Alternative splicing (AS) refers to the process of producing different splicing isomers of mRNA through 
executing different splicing modes (selecting different splicing site combinations) on a mRNA precursor. There are 
emerging research work using neural network to predict AS patterns. One initial work by Leung et al. developed a 
deep neural network to predict splicing patterns in individual tissues and the differences across tissues. Experiment 
results show that the deep architecture surpasses the performance of the Bayesian method for predicting AS 
patterns (Leung et al., 2014). In order to more accurately predict AS regulatory factors, research work has been 
done to improve the neural network model. For example, Anupama et al. developed a new target function using 
Bayesian neural network (BNN) and deep neural network (DNN) for AS prediction (Anupama et al., 2017).  

A splice junction refers to the boundary between a pair of adjacent exon and intron. Identifying splice 
junctions of a gene is important for deciphering its primary structure and function. In order to realize the precise 
identification of spice junction, Lee et al. exploited deep RNN to model DNA sequences and predict splice 
junctions thereon. This approach significantly outperforms conventional machine learning methods as well as a 
recent deep belief network-based technique (Lee et al., 2015). 

3.2.2 Non-coding RNA 

Non-coding RNA (ncRNA) refers to RNA that does not encode proteins, which can be roughly classified as 
miRNAs (micro-RNAs), snRNAs (small-nuclear RNAs), siRNAs (short-interfering RNAs), shRNAs (short-hairpin 
RNAs), circRNAs (circular-RNAs) and lncRNAs (long-non-coding RNAs) (Hüttenhofer et al., 2005). Recent 
studies show that ncRNAs play important roles in RNA modification, RNA splicing, regulation of transcription and 
translation, RNA interference, etc (Wang et al., 2018). In the past few years, several deep learning approaches have 
been proposed to predict ncRNAs utilizing sequence statistics. 

lncRNA 

The long non-coding RNAs (lncRNAs) play significant roles in various cellular functions, such as immune 
response, genetic regulations, and embryonic pluripotency (Fatica et al., 2014; Deng et al., 2018; Deng et al., 2019). 
Research has been done using neural network to identify lncRNAs. Tripathi et al. proposed lincRNA prediction 
method (DeepLNC) using deep neural network. In their approach, k-mer information is generated based on 
Shannon entropy function to improve the classification accuracy. Two datasets, LNCipedia and RefSeq, are used as 
experiment benchmark, and the method successfully identified known lncRNAs with 99 % accuracy (Tripathi et al., 
2016). Yu et al. adopted the autoencoder deep learning algorithm to detect lincRNA. This algorithm captures useful 
features and the information correlation along genome sequences for lincRNA detection. The experimental results 
show that the autoencoder algorithm has better performance compared with SVM and traditional neural network 
(Yu et al., 2017). 

MicroRNA 
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MicroRNAs (miRNAs) are endogenous non-coding RNAs with regulatory functions in eukaryotic organisms. 
MicroRNAs play a crucial role in post-WUaQVcULSWLRQaO geQe UegXOaWLRQ b\ aWWachLQg LWVeOf WR Whe 3¶ XQWUaQVOaWed 
region of the target mRNA (Xu et al., 2018). Park et al. proposed a novel learning approach (deepMiRGene) that 
identifies precursor miRNAs using RNNs, specifically LSTM network. Applying learning algorithm in microRNA 
prediction is difficult due to the palindromic structure of a precursor miRNA. To this end, deepMiRGene divides 
the input sequence into the forward and backward streams and each structure stream is learned in different 
sequential directions (Park et al., 2016). Lee et al. proposed an end-to-end miRNA target prediction framework 
(deepTarget) using the RNN-based auto-encoding. By combining unsupervised and supervised learning approaches, 
deepTarget not only achieves an unprecedented high level of accuracy, but also makes manual feature extraction 
unnecessary. DeepTarget successfully discovers the inherent sequence representations due to the fact that it 
processes miRNA and RNA sequences with RNN-based autoencoders without alignment (Lee et al., 2016).  

3.2.3 Messenger RNA 

Messenger RNA (mRNA) is transcribed from DNA and conveys the genetic information by guiding protein 
synthesis. Hill et al. used deep RNN to discover complex biological rules and decipher RNA protein-coding 
potential. Their method trains a gated RNN on human mRNA and lncRNA sequences firstly, and then uses it to 
predict protein-coding potential. It surpasses the state-of-the-art methods despite being trained with less data and no 
prior concept of what features define mRNA (Hill et al., 2018). Sample et al. used CNN to predict the effect of 
hXPaQ 5¶ UTR YaULaQWV RQ ULbRVRPe ORadLQg. The\ cRPbLQed SRO\VRPe SURfLOLQg Rf 280,000 UaQdRPL]ed 5¶ 
untranslated regions with deep learning to build a model that predicts translation efficiency from hXPaQ 5¶ UTR 
sequences. In addition, they aOVR XVed Whe geQeWLc aOgRULWhP WR deVLgQ QeZ 5¶ UTR VeTXeQceV, ZhLch accXUaWeO\ 
direct specified levels of ribosome loading (Sample et al., 2019).  

3.2.4 Expression 

Gene expression refers to the process of synthesizing functional RNA with genetic information from genes. 
Gene expression is affected by many factors at various levels, including genetic variants at the DNA level. Recently, 
more and more research work, including the neural network method, concentrates on the gene expression prediction 
based on genomic sequence. Chen et al. proposed a deep learning method (D-GEX) to infer the expression of target 
genes from the expression of landmark genes (Chen et al., 2016). Besides, DeepChrome is a CNN trained on 
histone modification data to predict gene expression. DeepChrome extracts complex interactions among important 
features automatically. Specifically, it uses a novel optimization-based technique to generate feature pattern maps, 
and visualize the combinatorial interactions among histone modifications (Singh et al., 2016). In addition, Xie et al 
applied a new deep learning model named multilayer perceptron with stacked denoising autoencoder (MLPSAE) to 
predict gene expression profiles from genotypes. Experiment results show that it outperforms the methods of 
MLP-SAE without dropout, Lasso and random forests (Xie et al., 2017). Cuperus et al. used a model to predict the 
SURWeLQ e[SUeVVLRQ Rf Whe 5¶ UTR of mRNAs. The trained CNN with random library performs well at predicting the 
protein expression of both the random and QaWLYe 5¶ UTRV. Their method can also capture the effect of sequence 
variation adjacent to the coding region in several biological processes including transcription, translation and 
protein stability (Cuperus et al., 2017). ExPecto is a modeling framework for ab initio prediction of tissue-specific 
gene expression levels. This framework integrates CNN with spatial feature transformation and L2-regularized 
linear models to predict tissue-specific expression (Zhou et al., 2018). Finally, Washburn et al. developed two CNN 
architectures to predict mRNA expression levels from DNA promoter and/or terminator regions. Their first work is 
to predict whether a given gene is expressed or unexpressed by constraining training and testing sets to include 
different gene families. The second work is to predict which of the two compared gene orthologs has higher mRNA 
abundance. In the second work, evolutionarily informed comparisons between orthologous genes is used to both 
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control and leverage evolutionary divergence(Washburn et al., 2019). 
Gupta et al. applied the deep architectures to learn intricate structure in gene expression data for gene 

clustering. This method uses denoising autoencoder deep architectures to pre-train data in an unsupervised manner 
and learn the properties of gene expression profiles. The generated features by the model are useful for gene 
clustering and would facilitate understanding the interactions and regulation among genes (Gupta et al., 2015).  

3.3 Deep learning at the protein level 

3.3.1 Transcription factor 

Transcription factors (TFs) are DNA binding proteins that bind to gene promoter and enhancer regions, and 
thus play an important role in gene expression regulation. Predicting TF binding sites has attracted more and more 
researchers in recent years. Quang and Xie developed a convolutional-recurrent neural network model (FactorNet) 
to interpret binding patterns and reveal insights into regulatory grammar. They also introduced several novel 
strategies to reduce the computation overhead of deep neural network (Quang et al., 2019). In another research, 
Chen et al. used a hybrid approach between kernel methods and deep neural network, convolutional kernel network 
(CKN), to improve the prediction of TF binding sites (Chen et al., 2017). Gapped k-mers frequency vectors 
(gkm-fvs) is an effective sequence-based prediction (e.g., TF binding site prediction) method (Ghandi et al., 2014). 
However, it is computationally expensive, especially for a large kernel matrix and large amount of data. To solve 
this problem, Cao et al. proposed a flexible and scalable framework (gkm-DNN) to achieve efficient feature 
representation and accurate prediction using deep neural networks (DNN). Experiment results show that gkm-DNN 
not only overcomes the drawbacks of high dimensionality, colinearity and sparsity of gkm-fvs, but also produces 
better accuracy compared with gkm-SVM in much shorter training time (Cao et al., 2017). Lanchantin et al. 
proposed the Deep Motif Dashboard (DeMoDashboard) to explore three different DNN architectures for TF 
binding site prediction (Lanchantin et al., 2016). 

DNA binding proteins play significant roles in transcription, translation, DNA repair, alternative splicing and 
replication machinery. Predicting the sequence specificities of a protein can help interpret a genomic sequence to 
detect potential binding sites. Alipanahi et al. adapted CNN to predict binding sequence specificities and patterns 
(DeepBind). DeepBind can discover new patterns even when the locations of patterns within sequences are 
unknown. In addition, DeepBind can predict deleterious SNVs in promoters and identify deleterious genomic 
variants (Alipanahi et al., 2015). DeeperBind is another novel doubly-deep model for the prediction of protein 
binding specificities with respect to DNA probes. DeeperBind makes full use of the complementary modeling 
capabilities of LSTM and CNN. Compared to DeepBind, DeeperBind removes the positional dimension of the 
intermediate features and it is capable of dealing with varying-length sequences by exploiting LSTM layers 
(Hassanzadeh et al., 2016). In a separate research, Zeng et al. applied a CNN architecture to predict DNA sequence 
binding using a large compendium of transcription factor datasets. Experimental results show that deploying more 
convolutional kernels is always important for motif-based tasks. In addition, the proposed method has improved 
performance compared to DeepBind through a systematic exploration of CNN architectures (Zeng et al., 2016). 

To study the binding of TFs to DNA sequence in a cell line without corresponding ChIP-seq data, the 
prerequisite question is determining the presence of binding motif in the DNA sequence. However, even if the 
motif is present, it only contains sequence information but cannot reflect the cell type-specificity of TF binding. To 
this end, Qin et al. combined deep neural network with a multi-task learning setting to share information across 
transcription factors and cell lines. The developed TFImpute achieves cell type-specific binding prediction for 
TF-cell line combinations without ChIP-seq data (Qin et al., 2017).  
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3.3.2 RNA-specific binding proteins 

RNA-binding proteins (RBPs) play important roles in multiple cellular processes, such as RNA editing, 
translational regulation, alternative splicing and mRNA localization, etc. Zhang et al. proposed a deep learning 
framework (deepnet-rbp) to predict structural binding preferences and binding sites of RBPs. The proposed 
deepnet-rbp is the first study of integrating additional RNA tertiary structural features to improve the model 
performance (Zhang et al., 2016). Besides, iDeep is a hybrid framework of CNN and DBN to integrate multiple 
heterogeneous datasets to predict RBP interaction sites on RNAs. The DBN learns high-level features that are 
determined by hidden variables for different inputs. The CNN component of iDeep captures low-level regulatory 
motifs with biological functions, which are recurring patterns in RNA sequences (Pan et al., 2017).  

3.4 Deep generative models in biology 

In the field of deep learning, two most commonly used and efficient generative models are Variational 
auto-encoder (VAE) and Generative Adversarial Networks (GAN). At present, the above two methods start to be 
used in genomics studies. 

3.4.1 Variational autoencoder 

Variational autoencoder is a kind of neural network that maps the input to the same-sized output via encoder 
and decoder. Encoder extracts and compresses the high-dimensional input data to a bottleneck distribution 
presentation, and decoder subsequently re-constructs an output based on the bottleneck distribution. VAE is 
commonly used to generate new data or to denoise data (Kingma et al., 2013; Rezende et al., 2014). In genomics, 
VAE has been used by several groups to generate new data, such as microbial genomes (Nissen et al., 2018). 
Grønbech et al. used VAE to learn biologically plausible groupings of scRNA-seq data with higher quality. The 
network predicts gene expression counts using appropriate discrete probability distribution as likelihood functions 
(Grønbech et al., 2018). In another study, researchers used VAE to generate protein sequences. Sinai et al. 
presented an embedding of natural protein sequences using VAE to predict how mutations affect protein function 
(Sinai et al., 2017). Davidsen et al. used VAE to generate T cell receptor protein sequences, which can perform 
accurate cohort frequency estimation. They also demonstrated that VAE-like models can distinguish between real 
sequences and generated sequences according to a recombination-selection model (Davidsen et al., 2019; Isacchini 
et al., 2019). 

3.4.2 Generative adversarial networks 

Generative adversarial networks (GAN) is deep generative model that generates new synthetic data via an 
adversarial process. GAN is composed of a generative model and a discriminative model, where the generative 
model generates new data point based on the captured data distribution, and discriminative model can estimate the 
probability of a sample coming from training data rather than from the generative model. The main purpose of 
GAN is that by training both models, the generator is able to synthesize new instances of data that the discriminator 
is unable to distinguish from the real data (Goodfellow et al., 2014). Until now, generative adversarial network has 
also been used in genomics, such as for inference of target gene expression profiles (Wang et al. 2018), reproducing 
high-resolution Hi-C data (Hong et al., 2019; Liu et al., 2019), etc. Same as VAE, GAN has also been used in the 
generation and augmentation of single-cell RNA-seq data, such as cscGAN (Marouf et al., 2020), scPhere (Ding et 
al., 2019), scRNAseq-WGAN-GP (Ghahramani et al., 2018), scRNA-seq data imputation (Gunady et al., 2019), 
etc.  

In addition, GAN also has important applications of generating sequences, including protein sequence, DNA 
sequence, promoter, etc. Anand et al. applied GAN to generate protein structures for fast de novo protein design 
(Anand et al., 2018). Repecka et al. developed the ProteinGAN to learn natural protein sequence diversity and 
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generate functional protein sequences (Repecka et al., 2019). Chhibbar et al. used GAN to generate protein 
sequences from antibiotic resistance genes. Experiment result shows that the generated sequences can be used to 
study and expand functionality associated with the antibiotic resistance determinants (Chhibbar et al., 2019). In 
2017, Killoran et al. firstly used GAN to generate and design DNA sequence. It opens the door for applying deep 
generative models to advance genomics research (Killoran et al., 2017). Later, Gupta et al. applied GAN to 
generate synthetic DNA sequences encoding proteins of variable length. They proposed a novel feedback-loop 
architecture named FBGAN to optimize the synthetic gene sequences for desired properties (Gupta et al., 2018). 
Instead of optimizing the input seed of a pre-trained GAN by Killoran et al., 2017, Linder et al. optimized the 
weights of the generator to maximize both sequence fitness and diversity. They developed the deep exploration 
networks (DENs) to obtain generators capable of sampling hundreds of thousands of high-fitness DNA sequences 
(Linder et al., 2019). Not only that, Yelmen et al. have trained GANs and restricted Boltzmann machines (RBMs) 
to learn the high dimensional distributions of real genomic datasets and created high quality artificial genomes 
(Yelmen et al., 2019). Different from generating DNA and protein sequences, Wang et al. applied GAN in de novo 
promoter sequence design to generate entirely new promoter sequences in Escherichia coli (Wang et al., 2019). 
This work indicates the potential of deep generative models in designing genetic elements in the future. 

3.5 A summary of deep learning in genomics 

The above-mentioned applications of deep learning models in genomics are summarized in Table 1. In the 
table, ANN refers to artificial neural network, BRNN refers to bidirectional recurrent neural network. MLP-SAE 
refers to multi-layer perceptron and stacked denoising auto-encoder. DA refers to denoising autoencoder. CKN 
refers to convolutional kernel network. FNN denotes the feedforward neural network. BLSTM refers to 
bi-directional long short-term memory recurrent neural network. BNN refers to Bayesian neural network, and 
SD-AE refers to stacked denoising autoencoder. Concrete information can be found in the supplementary materials. 

Table 1. The applications of deep learning in genomics 

Level Type Authors Abbr. Methods Website 

DNA 

Enhancer 

Kleftogiannis et al., 2015 DEEP ANN http://cbrc.kaust.edu.sa/deep/ 

Liu et al., 2016 PEDLA DNN https://github.com/wenjiegroup/PEDLA 

Min et al., 2016 DeepEnhancer CNN - 

Yang et al., 2017 BiRen CNN, BRNN https://github.com/wenjiegroup/BiRen 

Promoter 
Kelley et al., 2016 Basset CNN http://www.github.com/davek44/Basset 

Kh et al., 2017 CNNProm CNN http://www.softberry.com 

Non-coding 

DNA 

Zhou et al., 2015 DeepSEA CNN http://deepsea.princeton.edu/ 

Quang et al., 2016 DanQ CNN, BLSTM http://github.com/uci-cbcl/DanQ 

Zhou et al., 2019 ASDbrowser CNN https://hb.flatironinstitute.org/asdbrowser/help 

TSS 
Eser et al., 2016 FIDDLE CNN - 

Khodabandelou et al., 2018 DeepTSS CNN https://github.com/StudyTSS/DeepTSS/ 

Methylation 

states 

Wang et al., 2016 DeepMethyl SD-AE http://dna.cs.usm.edu/deepmethyl/ 

Angermueller et al., 

2017 

DeepCpG CNN https://github.com/PMBio/deepcpg 

Replication Liu et al., 2016 DNN-HMM DNN https://github.com/wenjiegroup/DNN-HMM 

cis-regulatory Li et al., 2018 DECRES FNN https://github.com/yifeng-li/DECRES 

lab-of-origin  Nielsen et al., 2018 - CNN https://github.com/VoigtLab/predict-lab-origin. 

Interaction 

Singh et al., 2016 SPEID LSTM - 

Yuan et al., 2019 CNNC CNN https://github.com/xiaoyeye/CNNC 

Huang et al., 2019 GCLMI AE - 

RNA Alternative Leung et al., 2014 - DNN - 
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splicing Lee et al., 2015 - RNN - 

Anupama et al., 2017 - BNN, DNN https://majiq.biociphers.org/jha_et_al_2017/ 

lncRNA 
Tripathi et al., 2016 DeepLNC DNN http://bioserver.iiita.ac.in/deeplnc 

Yu et al., 2017 - AE https://github.com/ningyu12/lincRNA_predict/ 

MicroRNA 
Park et al., 2016 deepMiRGene LSTM - 

Lee et al., 2016 deepTarget RNN-based AE http://data.snu.ac.kr/pub/deepTarget 

Messenger 

RNA 

Hill et al., 2018 mRNN RNN http://github.com/hendrixlab/mRNN 

Sample et al., 2019 Optimus 5-Prime CNN https://github.com/pjsample/human_5utr_modeling 

Expression 

Gupta et al., 2015 - DA - 

Chen et al., 2016 D-GEX DNN https://github.com/uci-cbcl/D-GEX 

Singh et al., 2016 DeepChrome CNN https://github.com/QData/DeepChrome 

Xie et al., 2017 MLP-SAE MLP-SAE https://github.com/shilab/MLP-SAE/ 

Cuperus et al., 2017 Deep-learning-ye

ast-UTRs 

CNN https://github.com/Seeliglab/2017---Deep-learning-ye

ast-UTRs 

Zhou et al., 2018 ExPecto CNN https://github.com/FunctionLab/ExPecto 

Washburn et al., 2019 - CNN https://bitbucket.org/bucklerlab/p_strength_prediction/ 

Protein 

Transcription 

factor 

Lanchantin et al., 2016 DeMoDashboard CNN, RNN - 

Chen et al., 2017 CKN-Seq CKN https://gitlab.inria.fr/dchen/CKN-seq 

Cao et al., 2017 gkm-DNN DNN http://page.amss.ac.cn/shihua.zhang/software.html 

Qin et al., 2017 TFImpute CNN https://bitbucket.org/feeldead/tfimpute 

Quang et al., 2019 FactorNet CRNN https://github.com/uci-cbcl/FactorNet 

DNA binding 

proteins 

Alipanahi et al., 2015 DeepBind CNN http://tools.genes.toronto.edu/deepbind/ 

Hassanzadeh et al., 2016 DeeperBind LSTM, CNN - 

Zeng et al., 2016 - CNN http://cnn.csail.mit.edu 

RNA binding 

proteins 

Zhang et al., 2016 deepnet-rbp RBM https://github.com/thucombio/deepnet-rbp 

Pan et al., 2017 iDeep CNN, DBN https://github.com/xypan1232/iDeep 

Generativ
e models 

Protein 

sequence 

Sinai et al., 2017 - VAE https://github.com/samsinai/VAE_protein_function 

Davidsen et al., 2019 - VAE https://github.com/matsengrp/vampire/ 

Anand et al., 2018 - GAN - 

Repecka et al., 2019 ProteinGAN GAN https://github.com/biomatterdesigns/ProteinGAN 

Chhibbar et al., 2019 W-GAN GAN - 

DNA sequence 

Killoran et al., 2017 - GAN - 

Gupta et al., 2018 FBGAN GAN - 

Yelmen et al., 2019 - GAN, RBM - 

Promoter Wang et al., 2019 WGAN-GP GAN - 

Based on our review of deep learning in genomics, we concluded that CNN is the most widely used method at 
present. The popularity of CNN is due to the merit of local connection via convolution kernel, sharing kernel 
weights, automated feature extraction, simple yet efficient learning procedures, high selectivity and high invariance. 
Application of GANs is also merging in genomics due to their roles in unsupervised learning and advantages of 
producing clearer and realistic samples, saving cost, and so on. For the experiment dataset, most of the current 
research work use the Human ENCODE dataset (de Souza, 2012). Dataset of mouse, Saccharomyces cerevisiae, 
yeast, maize and sorghum are also analyzed later. Figure 4 summarizes the published deep learning models along 
the central dogma of molecular biology. 

PyTorch and TensorFlow are the two most commonly used frameworks for deep learning. PyTorch was released 
b\ FacebRRN¶V AI ReVeaUch Oab LQ 2017. IW SULPaULO\ LQcOXdeV APIV LQ P\WhRQ WR be PRUe decOaUaWLYe aQd WhXV fLWV 
smoothly into the Python machine learning ecosystem. TensorFlow, on the other hand, was created at Google Brain 
at 2015. It has APIs in multiple programming languages. However, it is the high-level Keras APIs for TensorFlow 
that has proven very successful within the deep learning community. PyTorch is preferred by deep-learning 
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researchers, while TensorFlow is widely used in production environment. The reason for the divide is two-folds. 
P\TRUch¶V LQWXLWLYe APIV cRPbLQed ZLWh eageU e[ecXWLRQ PRde PaNe LW eaV\ fRU TXLcN WeVWLQg RQ VLPSOe VROXWLRQV 
and smaller-scale models. But in terms of production environment deployment, TensorFlow makes it easy to 
maintain and update the trained models on the server-side and allows compression of trained model so that it can be 
used on mobile devices. We have summarized and listed the deep learning framework used in various genomics 
studies in the supplementary table. However, no definitive answer exists regarding which one is better. As a rule of 
thumb, PyTorch is a general recommendation for deep learning researchers, while TensorFlow might be a better 
choice for deploying model in production environment. In either case, understanding the concepts and principles of 
deep neural networks regardless of framework is the key to build robust and efficient models.  

4. Caveats of Deep Learning Algorithm 

4.1 Model architecture 

Different neural network architectures have their own advantages and disadvantages. Appropriately selecting 
neural network or combining neural networks for specific biological problems requires deep understanding of the 
network as well as the biological context. For example, BiRen uses the hybrid model that integrates CNN and 
BRNN to predict enhancers (Yang et al., 2017). DanQ combines CNN and BLSTM to predict non-coding function 
de novo from sequence (Quang et al., 2016). Both example indicates specific reasons and probably quite a lot of 
trials on model selecting and testing. To let the biologists focus on the biological problem and be worry-free when 
using deep learning tools, automatic model selection could hopefully provide friendly usage of various deep 
learning models. For example, AutoGenome is a tool that enables researchers to perform end-to-end learning with 
the most cutting edge neural network architectures easily (Liu et al., 2019). In addition, optimizing existing deep 
neural networks and combining machine learning methods are promising research directions. For example, DEEP 
combines SVM and ANN to realize enhancer prediction (Kleftogiannis et al., 2015). Sample et al. used CNN and 
genetic algorithm to better SUedLcW Whe effecW Rf hXPaQ 5¶ UTR YaULaQWV RQ ULbRVRPe ORadLQg (SaPSOe et al., 2019). 
Liu et al. used deep learning and hidden Markov model in de novo identification of replication domains using 
replication timing profiles (Liu et al., 2016).  

4.2 Hyperparameter optimization 

Hyperparameters refer to model parameters that are set before training. By contrast, the values of other 
parameters are adjustable during model training stage. Hyperparameters are related to model selection and learning 
process. Better hyperparameters are conducive to the rapid convergence of the model, and could improve process of 
model construction. At present, it is common to start with multiple sets of parameters, and then select the 
parameters with the best learning effect to train the model. As we known, hyperparameter configurations are data 
and application dependent, tuning hypermeters are often necessary due to limited pre-knowledge about the data. In 
deep learning, based on empirical knowledge, some hyperparameters, such as number of hidden layers, length of 
convolutional filters, and learning rate, can be recommended to users. For example, setting the number of hidden 
layers to 3 has been suggested in a large number of genomic research (Kelley et al., 2016; Khodabandelou et al., 
2018; Washburn et al., 2019; Zhou et al., 2015). Besides, the number of units in neural network is mainly related to 
specific predicted objects. For example, it is usually set to 0~500 for the region prediction problem, a range of 16, 
32, 64, 128 for prediction of transcription factor, binding proteins and expression prediction, and 0~1000 for the 
function annotation, splicing, methylation states and interaction prediction. 

4.3 Training set/test set splitting 

The training set is used for training the model, and the test set is used to evaluate model performance after 
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training is completed. The partition of training set/test set should keep the consistency of data distribution as much 
as possible, and avoid the influence of extra deviation on the final result. The commonly used training set/test set 
splitting methods include hold-out, cross validation, bootstrap, etc. The legend representation of cross validation 
about training/test dataset splitting is shown in Figure 5(A). Importantly, it is necessary to split appropriate training 
and testing sets according to the data characteristics of specific problems, such as the specific biological relevance. 
For example, Washburn et al. used the gene-family guided splitting method to solve the problem of closely related 
genes appear in both training set and testing set. They used gene-family relationships to ensure that genes within 
the same family do not appear both in the training and testing sets (Washburn et al., 2019). 

4.4 Ensemble learning 

As we know, putting heads together could come up with good ideas and two heads are usually better than one. 
In the same way, it is likely to achieve better performance by combining the classification results of several 
classifiers instead of relying on a single classifier. Ensemble learning denotes the generation of multiple learners 
through certain rules and the integration of all learners as the final comprehensive output. It could effectively solve 
a common problem in deep learning that results of neural network method sometimes differ greatly and hard to 
reproduce (Liu et al., 1999). In the field of deep learning, ensemble learning mainly includes the following three 
modes: varying training data, varying models and varying combination. 

Firstly, from the aspect of varying training data, the commonly used methods include k-fold cross validation 
and resampling. (1) In the k-fold cross validation, all training data sets are divided into k-sub training sets, then 
each sub training set is used to train the model separately, and finally results of k models are integrated as the final 
result. (2) In the resampling method, the composition of each training set can be different, and there may be 
duplicate data in different training sets. Resampling method allows the trained model to have slightly different 
expectations for sample density and different generalization errors. Secondly, for varying models, the following 
three kinds of methods are mainly used. (1) Different parameters are randomly used to initialize the models with 
the same configuration. (2) Change the configuration parameters of the model, including the hidden state vectors of 
different dimensions, hidden layers, learning rates, learning strategies, regularization methods, etc. (3) When a 
single model may need a long training time, it saves the best model periodically in the training process of other 
models and then integrates the saved models. Lastly, for varying combination, the simple way is to average the 
prediction results of all models. The improved method called model blending is to average the prediction results of 
all models by weighting, in which the weight is set using the validation set. In addition, we can design a new model 
to dynamically learn the weight of each model, which is generally called model stacking or stacked generalization. 

4.5 Complexity within the black box 

Neural networks are often considered as black boxes because they are difficult to interpret. It is usually tricky 
to discover the key features that affect the decision-making in the neural networks. To this end, developed methods 
include fitting a simple model in the local area of input (Ribeiro et al., 2016; Turner, 2016), or observing the change 
of output by providing a local perturbation to the input (Shrikumar et al., 2017; Sundararajan et al., 2017; Zeiler et 
al., 2014). However, both methods rely on some fixed deep neural network frameworks, and the results are usually 
not stable and vulnerable to noise. In order to solve these problems, the idea of knockoffs is introduced into the 
neural network (Lu et al., 2018). By constructing the knockoff features of the original features, the processes 
happen inside the black box of neural network are somehow revealed. The legend representation of using knockoff 
features to open the black box of deep learning is shown in Figure 5(B). Besides, we can use gradient and 
perturbation methods to identify the importance of sequence regions that a neural network uses to make decisions. 
For example, Washburn et al. applied two gradient-based methods (Saliency and DeepLIFT) and one 
perturbation-based method (Occlusion) to identify motifs/putative cis elements. Their pseudo-gene model indicates 

Acce
pte

d

 http://engine.scichina.com/doi/10.1007/s11427-020-1804-5



 14 

that promoter is more important than the terminator to determine the on/off of gene expression (Washburn et al., 
2019). 

5 Future Perspectives 

5.1 Deep generative models 

Deep generative models are powerful methods to effectively learn complex data distribution using 
unsupervised learning and generate new data points that are indistinguishable from the training set. In only few 
years, it has already achieved great success in many fields, such as creating new image content, and still remains as 
one of the hottest research areas. As described in section 3.4, VAE and GAN have been widely used in synthetic 
biology, such as for generation of DNA sequence (Linder et al., 2019; Yelmen et al., 2019), promoter sequence 
(Wang et al., 2019), protein sequence (Sinai et al., 2017; Repecka et al., 2019), single-cell RNA-seq data (Marouf 
et al., 2020; Grønbech et al., 2018) and high-resolution Hi-C data (Hong et al., 2019; Liu et al., 2019), etc. The 
generated new DNA elements, as described above, would possibly save the sequencing cost on a large number of 
samples, and more importantly, these functional elements could constitute the building blocks for synthetic biology. 
The representation of using GANs to generate sequences is shown in Figure 5(C). 

5.2 Interaction prediction 

The gene-gene interactions are important research directions in functional genomics. Constructing the gene 
regulatory network mainly uses the gene expression data, which is called as reverse engineering (Margolin et al., 
2006). The commonly used gene regulatory network construction methods include weighting matrix, Boolean 
network, linear function, mutual information, Bayesian network, etc. Until now, there are few researches 
concentrating on gene interaction prediction based on genome sequence. In addition, chromatin loops play 
important roles in transcriptional regulation by bringing together remote regulatory elements and their target genes. 
Such long-range interactions contribute to variations in gene expression, metabolism, and terminal traits (Peng et 
al., 2019). Recently, using deep learning to detect these interactions has attracted researchers' attention. Singh et al. 
used a deep learning model (SPEID) to predict enhancer-promoter interactions using only the sequence information 
(Singh et al., 2016). This is the first work that uses sequence-based features alone to predict genome-wide 
enhancer-promoter interactions. Later, GCLMI is developed to predict lncRNA-miRNA interactions by combining 
graph convolution and auto-encoder (Huang et al., 2019). With continuous development of 3D genome technology 
and increasing amount of interactome data, it will be increasingly convenient for researchers to detect the sequence 
interactions. We believe that there will be more and more research work using deep learning to predict interactions. 

5.3 Transfer learning 

Transfer learning aims to use the knowledge learned from one environment to facilitate the learning tasks in 
another environment. The parameters in the pre-trained model are re-used in the new model as feature extractor. 
The parameters in the new model will be trained on a relevant small dataset. In such a way, transfer learning 
alleviates the demand on large data size and still enables us to produce an accurate model. The representation of 
transfer learning is shown in Figure 5(D).  

In scenarios that the data sets in two tasks are closely related, the pre-trained model can be shared to the new 
model through transfer learning. It is unrealistic to train the large-scale neural networks with tens of millions of 
parameters from scratch when the number of data samples is small. Training a large model with inadequate data 
would easily lead to the overfitting problem. Using the pretrained model obtained by learning similar problems 
with available large training dataset, transfer learning effectively helps to solve the problem with insufficient 
samples. For example, we can share the model parameters among different species. The model parameters of 
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training rice can be used in the model that studies the function of maize sequence. Similarly, model parameters can 
be re-used among different sequence data types. The model parameters of sequence specific DNA binding protein 
identification can be used in the model for sequence specific RNA binding protein. 

5.4 Applications in plant and animal breeding 

How can deep learning models be used to guide the genetic improvement of livestock and crops? There are at 
least three approaches. (1) Deep learning models are extremely powerful at predicting the effects of natural 
genomic variants on molecular phenotypes, irrespective of the frequencies of these variants in natural populations, 
or the magnitude of their effects. Thus deep learning models, combined with models linking molecular phenotypes 
to terminal traits (such as association mapping and genomic selection), will prove helpful to guide breeding 
programs. As shown in Figure 6(A), we can predict the variation loci for specific phenotypes using deep learning 
except the prediction of the type of sequence and expression level of specific gene sequence. (2) We can use deep 
learning to detect DNA sequence interactions (such as gene-gene interactions, interactions between variant 
regulatory elements and target genes, lncRNA-miRNA interactions), which tremendously help us to draw the 
genetic variation topology network of gene expression as well as phenotype variation (Peng et al., 2019). The 
detected sequence interactions can help the functional genomic research, thus enhancing studies about the genetic 
architecture associated with complex traits. As shown in Figure 6(A), deep learning can be used to predict whether 
there is interaction or not between two sequences, and thus serve the functional genomic research of plants and 
animals. (3) Generated DNA elements could constitute the building blocks for synthetic biology. We can use deep 
generative models (eg. GAN, VAE) to generate novel genomic elements, so as to achieve desirable molecular 
phenotypes or terminal traits. As shown in Figure 6(B), functional sequences for specific DNA elements (such as 
enhancer, high expression) generated by deep generative models would be combined or further integrated to 
bio-engineered system to produce desirable phenotypes. Moreover, sequences with multiple functions may be 
generated via joint training of several deep learning models that are targeting at maximize individual phenotype 
separately. A versatile sequence that can interact with several sequences can also be generated, and it will be helpful 
for the subsequent research of biological synthesis. More than that, deep generative models can produce sequences 
favorable for multiple better phenotypes, thus to simplify the study on synthetic biology. Taken together, we 
propose that deep learning will be a key technique in future livestock and crop breeding. 

 

Conclusion 

Deep learning has transformed many aspects of genomics studies, the usage of CNN in sequence analysis and 
application of GANs in generating new dataset have especially gained a great deal of success. We expect to witness 
more successes in the near future becaXVe Rf deeS OeaUQLQg¶V merits of automated feature extraction, little 
requirement for handcrafted engineering, high selectivity and high invariance. These properties allow researchers to 
easily take advantages of huge amount of data. New learning algorithms and architectures that are currently being 
developed, as well as continuous application of deep learning in genomics will innovate and accelerate research in 
sequence analysis, function prediction, expression prediction, interaction identification and breeding of plants and 
animals. 
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Figure 1  Overview of training machine learning models. Training efficient and robust machine learning models 

require large dataset with labels, Graphics Processing Unit (GPU) accelerated clusters and machine learning models 

provided in model libraries. After training a CNN with millions of images, the model can predict the category of 

unseen images accurately. 
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Figure 2  Specific process of machine learning. Initially, datasets are collected from different sources in various 

forms such as structured, unstructured or semi-structured data. Data preprocessing includes normalization, 

discretization, missing value filling, removing collinearity, training set and test set segmentation, data wrangling, 

etc. Model training is the core stage of machine learning, which includes model selection, objective function 

optimization, training stop condition setting, cross validation, hyperparameter tuning, etc. In model evaluation 

stage, test data set is used to evaluate model performance by measuring accuracy and drawing receiver operating 

characteristic (ROC) curve, etc. Then the trained model is employed to make predictions on new datasets. In 

addition, sometimes we would like to know how a model makes its predictions. In such a case, the importance of 

individual features, or interaction among features, is needed to explain a model¶s predictions. 
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Figure 3  Application of CNN in genomics. (1) One-hot encoding is used to encode DNA sequence to matrix as the 

input of CNN. All filters (one filter example is shown in Figure 3(B)) are randomly initialized. (2) The encoded DNA 

is convoluted on the basis of initialized filters. The filter is multiplied by the corresponding input data through the 

sliding window, and the sum is computed and recorded (Figure 3(C)). The filters are adjustable parameters, often 

called weights, which are modified in the training process, as to improve the model performance. Sharing filters is 

one of the key ideas of CNN to reduce the number of connections between each layer and thus reduce the risk of 

overfitting. (3) The output of the convolution layer is mapped nonlinearly using activation functions. As shown in 

Figure 3(D), all negative values in the feature map are capped to zero using Rectified Linear Units (ReLU). (4) Based 

on the feature map obtained by convolution operation, the pooling operation is carried out to further filter the 

feature map. Generally, average pooling and max pooling are the two major pooling methods, with max pooling 

(Figure 3(E)) more widely used. The pooling layer is sandwiched in the middle of the convolution layers to reduce 

the data dimension, the number of parameters and the possibility of overfitting. (5) Multiple layers consisted of 

convolution and pooling operations are stacked with each layer representing the data in slightly more abstract form 

than the previous layer. After 10-20 convolutional and pooling layers, a fully connected layer is added as the output 

layer (Figure 3(F)). (6) Step (1) to (5) illustrate the feedforward pass in the training process. The feedforward pass 

outputs a prediction of the example. To increase the prediction accuracy, we first calculate the error (distance) 

between prediction and labeled category. To minimize the prediction error, back propagation is used to calculate the 

error gradient of all weights in the network. Specifically, stochastic gradient descent (SGD) is commonly used to 

update all filters to minimize the output error. Step (2)-(6) are repeated for all the input samples until the error 

stops decreasing. A test data set is then used to evaluate the generalization of the model, indicating whether the 

model can produce sensible predictions on data never seen before. The trained model could be used for various 

purposes, such as the predictors for enhancer, promoter, gene expression, interaction, etc. 
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Figure 4. The applications of deep learning in genomics at the levels of DNA, RNA and protein. At the DNA level, deep 

learning has been applied in research related to enhancer, promoter, non-coding DNA, TSS position, methylation 

states, cis-regulatory, replication, and interaction. At the RNA level, deep learning has been used to study 

alternative splicing, lncRNA, MicroRNA, messenger RNA and expression. At the protein level, deep learning is used 

to study transcription factor, DNA binding proteins, RNA binding proteins, and protein sequence generation. GANs 

have also been applied to solve biological questions at different molecular levels. 
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Figure 5. Caveats of using deep learning in genomics. (A) overfitting and underfitting. (B) training/test dataset 

splitting. (C) ensemble learning. (D) using knockoff features to open the black box of deep learning. (E) using 

generative adversarial networks to generate sequences. (F) process of transfer learning. 
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Figure 6. Deep learning in plant and animal breeding. (A) Three applications of deep learning in genomics. A deep 

learning model, once trained on training set and verified using testing set, can be used in various scenarios, 

including functional annotation of biological sequences such as prediction of gene-centric properties, prediction of 

the interactions among sequences, and prediction of phenotypic effects of natural variants. (B) Three applications 

of generative models in synthetic biology, including the generation of genomic elements with defined functions 

(such as enhancers or promoters), the generation of interacting sequences, and also generation of biological 

sequences conferring crops with superior agronomic traits. (C) Deep learning-guided crop genetic improvement. 

Biological sequences with desirable functions are transferred into crops by transgene or genome editing, in order to 

improve agronomic traits of crop species more efficiently. By this means, crop improvement becomes a designed 

process, and is no longer limited by natural variation. 
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