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SUMMARY

As one of the most extensively cultivated crops, maize (Zea mays L.) has been
extensively studied by researchers and breeders for over a century. With ad-
vances in high-throughput detection of various omics data, a wealth of multi-
dimensional and multi-omics information has been accumulated for maize and
its wild relative, teosinte. Integration of this information has the potential to
accelerate genetic research and generate improvements in maize agronomic
traits. To this end, we constructed ZEAMAP, a comprehensive database incorpo-
rating multiple reference genomes, annotations, comparative genomics, tran-
scriptomes, open chromatin regions, chromatin interactions, high-quality genetic
variants, phenotypes, metabolomics, genetic maps, genetic mapping loci, popu-
lation structures, and populational DNA methylation signals within maize inbred
lines. ZEAMARP is user friendly, with the ability to interactively integrate, visu-
alize, and cross-reference multiple different omics datasets.

INTRODUCTION

Maize (Zea mays L.) is one of the most important crops for food, feed, and fuel and is also a model species for
genetic and genomic researches. As the cost of sequencing has been decreased and new omics technologies
have arisen, there has been an explosive growth in the amount of biological information available for maize. The
maize B73 reference genome has recently been updated (Jiao et al., 2017), and four high-quality maize genome
assemblies have been released during the last 2 years (Li et al., 2019; Springer et al., 2018; Sun et al., 2018; Yang
et al., 2019). The previous two-dimensional genome has recently been resolved in three dimensions with the
mapping of open chromatin and the identification of chromatin interactions based on ChiA-PET and Hi-C tech-
nologies (Peng et al., 2019; Rodgers-Melnick et al., 2016). Omics data, including deep DNA resequencing, tran-
scriptome, and metabolome, have been accumulated at the population scale (Hirsch et al., 2014; Hu et al., 2018;
Lietal., 2013; Walley et al., 2016; Wang et al., 2018; Wen et al., 2014; Xu et al., 2019a; Zhou et al., 2019). There are
many different applications for these new datasets, including gene cloning and the study of regulatory networks.
These new and comprehensive datasets provide valuable resources for maize research and have the potential to
completely revolutionize breeding (Wallace et al., 2018).

Comprehensive databases are needed to store, maintain, and analyze the multi-omics data that are now
available for maize. Several maize genomics and functional genomics databases have been developed,
including the Maize Genetics and Genomics Database (MaizeGDB) (https://www.maizegdb.org/), which
collects maize reference sequences, stocks, and phenotypic and genotypic data and also provides useful
tools for maize data mining (Lawrence et al., 2004; Portwood et al., 2018). Panzea (https://www.panzea.org/
) collects genotypic and phenotypic information for several maize populations (Zhao et al., 2006), whereas
MaizeNet (http://www.inetbio.org/maizenet/) provides a genome-scale co-functional network of maize
genes (Lee et al., 2019). Other generic databases such as GenBank (https://www.ncbi.nlm.nih.gov/
genbank/), Gramene (http://www.gramene.org/), and ePlant (http://bar.utoronto.ca/eplant_maize/) also
collect maize omics data. Despite being very useful, these databases are designed either to collect general
maize genomic and genetic information or to focus on one specific omics area. To make the best use of the
multi-omics information for maize research and breeding, researchers currently need to either systemati-
cally integrate omics data generated from different sources (Rajasundaram and Selbig, 2016) or use
multi-omics data that were all generated from the same panel.
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MODEM (http://modem.hzau.edu.cn/) is the first attempt to integrate multi-omics datasets, including
various types of genetic variants, expression data, and metabolomic data (Liu et al., 2016). Despite the
importance of wild relatives in understanding the domestication of modern crops, no existing maize
multi-omics databases incorporate teosinte (Tian et al., 2019). To fill this gap, we have developed ZEAMAP
(http://www.zeamap.com/), a multi-omics database for maize research and breeding, which integrates
omics data generated from 507 elite inbred lines (in an association mapping panel, AMP) (Yang et al.,
2011) and 183 teosinte accessions (unpublished data). ZEAMAP includes genome assemblies and annota-
tions of four inbred lines, B73 (Jiao et al., 2017), Mo17 (Sun et al., 2018), SK (Yang et al., 2019), and Huang-
ZaoSi (HZS) (Lietal., 2019), and a teosinte accession (Zea mays ssp. mexicana) (Yang et al., 2017), expression
patterns of tissues from different developmental stages of the same inbred line (Walley et al., 2016; Yang
et al.,, 2019) and same tissue of different samples within the AMP (Li et al., 2013), three dimensional chro-
matin interactions and open chromatins of B73 (Peng et al., 2019), genetic variations including single-nucle-
otide polymorphisms (SNPs), small insertions and deletions (InDels) and large structure variations (SVs)
generated from the deep sequencing of the AMP and the comparison among reference genome
assemblies, the phenotypes and metabolome of the AMP and the related loci mapped by genome-wide
association studies (GWASs), expression quantitative trait locus (eQTL) and linkage analysis, the popula-
tion structure and pedigrees of each germplasm, and the populational DNA methylation signals within
maize inbred lines. ZEAMAP generated comprehensive functional annotations for the annotated gene
models in each assembly and provided useful tools for users to search, analyze, and visualize all these
different omics data.

RESULTS
Overview Structures of ZEAMAP Database

ZEAMAP comprises a user account management system, a main database, a full-site search engine, and a
set of analysis and visualization tools (Figure S1). The multi-omics data in ZEAMAP are categorized into five
main content modules involving genomic, genetic, variation, population, and epigenetic information (Fig-
ures Tand S1). ZEAMAP construction utilized the biological community database construction toolkit Tripal
(Ficklinetal., 2011), which combines the content management system Drupal (https://www.drupal.org) with
the standard biological relational database storage backend, Chado (Jung et al., 2016). Each feature in
ZEAMAP has its own page, and features are linked to each other by sequence ontology relationships.

The Genomics Module

The Genomics module collects reference genome assemblies, gene expression profiles, and comparative
genomics information related to the available genomes and populations in ZEAMAP. Currently, ZEAMAP
contains reference genome assemblies of four maize inbred lines (B73, SK, Mo17, and HZS) and one
teosinte species (Zea mays ssp. mexicana). Each genome assembly has its own page, which contains gen-
eral information for each genome assembly and sub-menus with links to access various related information
and bioinformatics analysis tools (Figure S2). The mRNA and predicted protein for gene models in each
genome assembly were assigned functional annotations including gene ontologies (GO), Kyoto Encyclo-
pedia of Genes and Genomes pathways (KEGG), clusters of orthologous groups (COG), orthology relation-
ships, Single Copy Orthologs (SCO), known gene-product annotations, proteolytic enzymes, and related
items in InterPro, PFAM, and NCBI nr databases (Figure S3). The genome features for each assembly,
including genes, mRNAs, proteins, and transposable elements, can be searched by their IDs or locations
through Chado feature search (Figure S4A). Genes (as well as mMRNAs and proteins) can also be searched
by their functional annotation descriptions (Figure S4B). Each annotated genome feature has its own page
with multiple sub-menus displaying summary information (resource type, accession, organism, name, iden-
tifier, and others), sequences, annotations, cross-references linked to the same feature in MaizeGDB or
NCBI, as well as related parent and child features, orthologs, and synteny blocks.

Two genome browsers, JBrowse (Buels et al., 2016) and WashU Epigenome Browser (Zhou et al., 2013),
were embedded to display the genome sequences, annotated genomic features, and other genomic infor-
mation for all the available reference genome assemblies in ZEAMAP (Figure 2A). Both genome browsers
are designed to easily add tracks, search for certain information in specific regions, and export data as well
as figures. These two genome browsers share some common features, including genome sequences and
genomic annotations. However, each one has unique information tracks (see sections below) because
JBrowse performs better when dealing with large piecemeal features such as variations and the WashU Epi-
genome Browser is specially designed to display epigenomic tracks.
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Figure 1. A Screenshot of the ZEAMAP Home Page

The home page of ZEAMAP consists of a top menu bar, a site-wide search engine, access to the six biological modules, and miscellaneous tools.

ZEAMAP provides comparative genomic information for each pair of the available reference genome as-
semblies, including both synteny blocks identified from gene collinearities and whole-genome alignment
details. The synteny blocks are managed and displayed through the Tripal synteny viewer module (https://
github.com/tripal/tripal_synview). Each synteny block has its own unique block ID and can be searched by it
in both the Synteny block browser page and in the full-site search engine (Figure 2B). The detailed whole
genome sequence alignments can also be accessed through the genome browser (Figure 2B).
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Figure 2. Features of the ZEAMAP Genomics Module

(A) Schematic diagram of the two genome browsers embedded in ZEAMAP, Jbrowse(1) and the WashU Epigenome Browser(2).

(B) Comparative genomic information in ZEAMAP, including Gene synteny blocks displayed by the synteny viewer with interactive circos plots and links to
the detailed collinearity of the included genes (1). Whole-genome sequence alignments between two genomes are also accessible through the WashU
Epigenome Browser, with Zoom-In and -Out functions and mouse-over display of the detailed alignments (2).

(C) Gene expression functions in ZEAMAP. The Tissue Overview function shows the expression of a gene in different tissues, with more detailed information
available upon click (1). ZEAMAP also has functions to cluster and display the expression patterns of several genes by tissue type (2) or sample (3), with the
gene IDs linked to pages with more detailed information.

We have collected gene expression patterns in different tissues for each maize genome assembilies, as well
as expression profiles of kernels for 368 inbred lines of the AMP (Li et al., 2013) based on B73 reference an-
notations. Expression patterns in different tissues for each gene can be visually displayed through heat-
maps after being queried in the “Tissue Overview" page (Figure 2C). ZEAMAP also enables users to browse
the expression patterns of several genes among different tissues or samples and cluster the genes and tis-
sues/samples based on the gene expression patterns (Figure 2C). Both functions provide download links to
a raw expression matrix of the queries.

The Variations Module

The Variations module collects the genotypes and annotations of polymorphic variations including SNPs,
InDels, and SVs among the AMP in reference to the B73 reference genome, as well as a haplotype map
generated from the SNP genotype matrix (see Transparent Methods for the source and the analysis
used to generate the related data). The general variation information of a gene, including variation posi-
tions, allele types, and annotations can be queried by their IDs or locations and displayed through tabular
view (Figure S5A). The variations can also be browsed through JBrowse. Upon clicking each variant block in
JBrowse tracks, the detailed information about that variant, including the annotations and the genotype of
each germplasm, will be shown. There is also a genotype overview for the variations in the current JBrowse
display panel when the related “variant matrix” track is selected (Figure S5B). ZEAMAP also provides a func-
tion to query for the detailed genotype matrix for specified germplasms within certain regions (Figure S5C).
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Figure 3. Features of the ZEAMAP Genetics Module
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(A) Schematic diagram of the “GWAS-Single-Trait” tool. The trait and region of interest can be queried through the top input boxes. Regions can be easily
browsed by clicking on the histogram of the interactive “Navigational Manhattan Plot” track. The “Detailed ScatterPlot” track plots the variants according to
their chromosome locations and by the significance of their p values. The colors of each dot indicate the LD r? values between that variant and the reference
variant (the purple diamond dot, can be reset by selecting the “Make LD reference” link on the popup page for each variant). The bottom track shows the
gene annotations in the selected region, with a popup for each gene element that links to a detailed information page, genome browsers, and the eQTL

visualizer for that gene.

(B) Schematic diagram of the eQTL visualization tool. The significant cis-eQTL site for each gene is sized by the significance of its p value and colored by the

effect size (beta value). The heatmap indicates pairwise LD r values of the variants.

(C) Schematic diagram of the TripalMap tool in ZEAMAP. This tool displays the detailed genetic markers and mapped QTLs for each linkage group. Both the

markers and the QTLs link to their own detailed information page.

The Genetics Module

ZEAMAP has collected phenotypic data from the AMP, including 21 agronomic traits, 31 kernel lipid con-
tent-related traits, 19 kernel amino acid content-related traits, and 184 known metabolites of maize kernels.
All these phenotypes can be searched and filtered by their threshold values using the “Search Trait Eval-
uation” tool (Figure S6). We have identified loci significantly associated with these phenotypes using
GWAS and provided a tabular data search function to find specific loci by trait names, variant IDs, chromo-
some regions, and significant p values (Figure S7). Three GWAS visualization tools (“GWAS-Single-Trait,"”
"GWAS-Multi-Trait,” and "GWAS-Locus"”) were developed to better browse the GWAS results and
compare the significant signals among different traits. Querying a trait and navigating to specific regions
can be easily accomplished by inputting boxes or through the interactive navigational Manhattan plot (in
GWAS-Single-Trait and GWAS-Multi-Trait tools). The GWAS-Single-Trait tool displays all signals associ-
ated with the selected trait as a scatterplot, with colors indicating the linkage disequilibrium (LD) r? values
between the user-selected reference variant and all the other variants (Figure 3A). The GWAS-Multi-Trait
tool was designed to compare GWAS signals among two or more traits, with the colors indicating different
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traits (Figure S8), whereas the GWAS-Locus tool displays GWAS signals of all traits that show significant
association with the query variant (Figure S9). These three tools are provided with a lightweight genome
browser that indicates the gene models within the current region. Each element in the plot is also interac-
tive and links to other related information.

Genetic variations can impact gene expression through many factors, including alterations in splicing, non-
coding RNA expression, and RNA stability (Gilad et al., 2008). Expression quantitative trait locus (eQTL)
mapping is a powerful approach to detect the possible variants that alter gene expression. In ZEAMAP,
we have collected cis-eQTL signals with gene expression patterns in maize kernels based on B73 annota-
tion and provided a tabular tool to search and filter eQTL signals by gene IDs, gene locations, distances
from transcription start site (TSS), effect sizes, and significance values (Figure S10). A visualization tool
was also developed to browse all cis-eQTLs affecting the selected gene, with significance values, effect
size, and pairwise LD information displayed interactively (Figure 3B).

ZEAMAP has currently collected 12 published genetic maps constructed from different artificial maize
segregating populations using genotypes generated from the Illumina MaizeSNP50 BeadChip (lllumina,
San Diego, CA, USA), as well as 813 quantitative trait loci (QTLs) identified from 15 plant architecture-
related traits (Pan et al., 2016). The genetic markers can be searched and filtered by their IDs, genomic lo-
cations, and genetic linkage group (Figure S11). QTLs can be searched by traits and QTL labels, resulting in
detailed records of the genetic markers located in or adjacent to that QTL. By employing the TripalMap
extension module (https://github.com/ksbuble/TripalMap), the linkage maps, including all related markers
and QTLs, can be visualized and compared with another map interactively (Figure 3C).

The Populations Module

It is often useful to dissect the genetic diversity, population structure, and pedigrees of maize lines for both
evolutionary studies and molecular breeding. ZEAMAP provides interactive information about the population
structures assessed by principal component analysis (PCA) and ancestries inferred from an unsupervised clus-
tering analysis for the whole Zea population and each sub-population in the database (Figure 4A). We have
also added a table that lists the origins or pedigree information for each inbred line of maize AMP (Figure 4B).

The Epigenetics Module

Eukaryotic gene expression has been shown to be altered by three-dimensional DNA interactions, which
are affected by chromatin accessibility. Additionally, the modifications of epigenetic states on histones
and nucleotides add another layer of control to gene expression regulation (Dekker, 2008). These regula-
tory factors are crucial for the ability of sessile plants to respond to diverse environmental challenges (He
and Li, 2018). InZEAMAP, we have collected the chromatin interaction maps associated with RNA polymer-
ase Il occupancy and the histone mark H3K4me3 according to the B73 reference genome (Peng et al., 2019).
Open chromatin regions are based on micrococcal nuclease (MNase) digestion (Rodgers-Melnick et al.,
2016), histone acetylation and methylation regions, and populational DNA methylation information gener-
ated from the third leaves at V3 of the 263 AMP inbred lines (Xu et al., 2019b). This information can be ac-
cessed through a tabular data browser or visualized through the WashU Epigenome Browser (Figure 5A).
For DNA methylation information from the AMP, customized interfaces were developed to easily select
multiple samples with differentially methylated regions (DMRs) in the table browser (Figure 5B) and visu-
alize both DMR and DNA methylation sites in the WashU Epigenome Browser (Figure 5C).

Additional Tools

In addition to the aforementioned major biological modules, ZEAMAP also offers several additional tools.
The currently available additional tools include a site-wide search engine, BLAST server, a CRISPR browser
and an FTP data downloader.

Although there are already independent search tools for several of these analyses, a site-wide search en-
gine powered by Chado is still useful since it enables users to quickly search for all items related to their
queries. The ZEAMAP site-wide search engine was built using the Tripal Elasticsearch module (https://
github.com/tripal/tripal_elasticsearch), with a search box that is accessible in both the home page and
the status bar of each page. The search engine supports advanced search behaviors including wildcards,
fuzzy searches, regular expressions, and Boolean operators. The search results are also categorized by their
entity type in the database (Figure 6A).
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Figure 4. Features of the ZEAMAP Populations Module
(A) Interactive PCA diagram (top two dot plots) and structure diagram (stacked bar plot). Each diagram is zoomable and
shows detailed information, including germplasm names and PCA/structure values when an element is moused over.
(B) A table browser is provided to search for germplasm by pedigree, origin, and subpopulation information.

We have also implemented an instance of NCBI's BLAST tool in ZEAMAP using SequenceServer (Priyam
et al., 2019), which provides a user-friendly interface with text-based and interactive visual outputs (Fig-
ure 6B). ZEAMAP currently has BLAST databases for whole-genome sequences, mRNAs, CDSs, and pre-
dicted proteins for each reference genome assembly.

ZEAMAP also includes an imbedded tool to search for reliable single-guide RNAs (sgRNAs) targeting the
genes in each maize genome assembly in the database in order to support genome editing experiments
using the CRISPR-Cas9 system. The sgRNA information can be browsed tabularly when querying a gene ID
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Figure 5. Features of the ZEAMAP Epigenetics Module

(A) Schematic diagram of chromatin interaction, chromatin accessibility, and histone modification tracks displayed in the WashU Epigenome Browser.

(B) Populational DNA methylation table browser. This tool filters population DNA methylation information by the DNA methylation type, germplasm, and
genomic region of interest, with the resulting matrix displaying DMRs for each selected germplasm within the query region.

(C) Interface of the population DNA methylation genome browser. This interface provides options to display DNA methylation information by DMRs or DNA
methylation sites of the selected germplasms within specified regions.

or a genomic region and graphically through JBrowse. Both the tabular and the graphical results provide
information about the editing positions and possible off-target genes (Figure S12).

Additionally, we have provided an FTP server to store a backup of all the publicly released datasets used in
ZEAMAP through h5ai (https://larsjung.de/h5ai/), an open source file indexer with an enhanced user inter-
face, text preview, and directory download.

DISCUSSION

We have created ZEAMAP, a database for maize research and breeding that collects multi-dimensional
omics information, including genome assemblies, comparative genomics, transcriptomes, open chro-
matin, chromatin interactions, genetic variants, phenotypes, metabolomics, genetic maps, genetic map-
ping loci, population structures and pedigrees, and populational DNA methylation signals within maize
inbred lines. Most of the datasets were generated from the same maize population, which makes it possible
to cross-reference these multi-omics data to support maize research in a more uniform and comprehensive
manner. To make the acquisition and analysis of information more effective and flexible, ZEAMAP provides
several convenient modules, including a site-wide search function, dataset-specific search tools, a BLAST
server, a gene expression pattern analyzer, tabular browsers, genome browsers, and specialized visualizers
for different datasets. ZEAMAP will be carefully maintained and continuously updated with the latest
genomic and genetic advances. More online analysis tools (software for LD and PCA analyses, for example)
will be embedded in ZEAMAP in the near future. Ultimately, we plan to systematically integrate all available
omics data and make ZEAMAP a platform to analyze relationships between genotypes and phenotypes in
order to predict complex traits for maize researchers and breeders.

Limitations of the Study

Currently, ZEAMAP has mainly focused on collection, query, and visualization of pre-analyzed datasets,
with only several lightweight online analysis tools embedded. The lack of comprehensive online analysis
tools that make the best of the multi-omics data in ZEAMAP to help users better understand their custom
data is the main limitation for the current version of ZEAMAP database.

Resource Availability
Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by
the Lead Contact, Ning Yang (yangningyingji@126.com).

Materials Availability

This study did not generate new unique reagents.
Data and Code Availability

All the strategies and data included in this paper are available from ZEAMAP (http://www.zeamap.com).
The related source codes are available at https://github.com/ZEAMAP.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101241.
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Figure 6. Features of the Additional Functional Tools in ZEAMAP

(A) An example search result by the site-wide search engine queried with an asterisk wildcard. The resulting items are
categorized by their feature types and have links to their detailed information pages.

(B) An example result of the BLAST server in ZEAMAP. The result page provides download links of sequences (1) with
reports available in different formats. Also included are interactive plot views of each alignment including Circos plots (2),
NCBI BLAST-like alignment hits visualization (3), and length distribution of hits (4). Each alignment hit has detailed
alignment information, including a graphic view of the aligned regions and detailed alignments (5).
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# Germplasm Species 100grainweight cobweight kernellength

1 150 Zea mays cultivar:B73 18.6644 18.7322 8.71982

2 177 Zea mays cultivar:B73 22.1752 16.6977 8.4085

3 238 Zea mays cultivar:B73 21.9434 17.4338 8.83602

4 268 Zea mays cultivar:B73 18.8663 14.0561 7.96233

5 501 Zea mays cultivar:B73 25.8311 17.2623 897662

6 812 Zea mays cultivar:B73 22.9926 11.902 9.0297

Figure S6. Search trait function in ZEAMAP, Related to Figure 3. Both qualitative and
quantitative trait could be searched by their trait values with multiple filter conditions
supported. The search result shows all the germplasms that passed the filter conditions and
their triat values.
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Figure S7. GWAS table browser in ZEAMAP, Related to Figure 3. The GWAS signals
could be searched by traits, variant IDs and variant locations, and filtered by significant P
values. Each record in the search result has links to the GWAS visualization tools.
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Figure S8. GWAS-Multi-Trait visualization tool in ZEAMAP, Related to Figure 3. This
tools displays GWAS signals of multiple traits, with logic similar to GWAS-Single-Trait tool (as
indicated in Figure 2A ). The only differences are that the traits here are multi-selectable, and
the colors in the detailed scatter plot indicate variants for different traits rather than LDs. A
“data layers” button has been added in the control panel of the detailed scatter plot to fade,
hide, order or remove certain trait layers.
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Figure S9. GWAS-Locus visualization tool in ZEAMAP, Related to Figure 3. This tool
displays all significantly associated signals between the query variant and all available traits,
with a yellow highlight line and a red dashed line respectively indicated the general and

detailed position of the query variant.
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Figure S10. eQTL table browser in ZEAMAP, Related to Figure 3. Using this tool, eQTL
signals could be filtered by gene IDs and locations, as well as the distance from transcription
start site, the effect size (beta value) and the significance (p value) of the most significant
variant within each gene. The search result shows one gene per record, with links to the
visualization of each gene. Each record has a sub-table which lists all the cis-eQTL signals

significantly associated with this gene.
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Figure S11. Genetic marker search functions in ZEAMAP, Related to Figure 3. The
genetic markers in ZEAMAP could be searched by their names, features and locations
through “Advanced Marker Search” function (A) or by their distances with certain QTL through
“QTL Nearby Marker” function (inset in A). The search result lists general information of
genetic and physical locations for each record, with physical locations linked to Jbrowse
visualization (B). Click on each marker name would lead to the detailed page for this marker
including the flanking sequence and the location on maps (C).
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Figure S12. Crispr sgRNA function in ZEAMAP, Related to Figure 1. The sgRNA
information could be searched by IDs and genome locations of target genes through table
browser (A), the resulted records have links to their locations on Jbrowse (B) and the detail
page of each Cas9_sgRNA element on Jbrowse shows the information of target and off-
target genes (C).



Transparent Methods

Data collection

The pedigree information of elite inbred lines in the maize association mapping panel was
collected from (Yang et al., 2011). The B73 reference genome assembly (AGPv4) and
annotation files (Version 4.43) were downloaded from Gramene
(https://www.maizegdb.org/genome/genome _assembly/Zm-B73-REFERENCE-
GRAMENE-4.0), while the Mo17 reference genome (version 1.0) and annotations (version
1.0) were downloaded from MaizeGDB (https://ftp.maizegdb.org/Maize GDB/FTP/Zm-
Mo17-REFERENCE-CAU-1.0/). The SK reference genome (version 1.0), annotations
(version 1.0) and RNA-seq data of nine SK tissues were collected from (Yang et al., 2019).
The HZS genome assembly, annotations and RNA-sequencing data were retrieved from
Genome Sequence Archive in Beijing Institute of Genomics (BIG) Data Center
(http://bigd.big.ac.cn/gsa) with project ID PRJCA001247. The genome assembly and
annotations of Zea mays ssp. mexicana were from (Yang et al., 2017). RNA-sequencing
of different B73 tissues were from (Walley et al., 2016), and RNA-seq data of developing
maize kernels from 368 AMP inbred lines were from (Li et al., 2013). The chromatin
interaction and histone modification data were from (Peng et al., 2019), the chromatin
accessibility data were from (Rodgers-Melnick et al., 2016), and the DNA methylation data
of the AMP were from (Xu et al., 2019). Variants, GWAS and eQTL signals, and phenotypes
of the AMP, including agronomic traits, kernel amino acid contents, kernel lipid contents
and metabolomic data were collected from previously reported studies (Liu et al., 2015;
Wen et al., 2014; Yang et al., 2014). Linkage maps and QTL mapping results were collected
from (Pan et al., 2016).

Functional annotation

For each genome annotation, the protein sequences of the predicted genes were
compared against the InterPro database using InterProScan 5 (Jones et al., 2014) to
identify functional protein domains. The proteins were further compared against the
GenBank non-redundant protein (nr) database using Basic Local Alignment Search Tool
(BLAST) with the options “-p blastp —e 1e-05 b 5-v5—-a4-m 7 —F F”. The BLAST results
against the nr database and the Interpro results were further analyzed by Blast2GO
(Conesa et al., 2005) to assign gene ontology (GO) terms. Kyoto Encyclopedia of Genes
and Genomes (KEGG) annotations were performed by running BLAST against the KEGG
database (version 84.0) with options “-p blastp -e 1e-05 -a 4 -m 8 -F F”. The proteins were
also searched against PFAM version 32.0 (Finn et al., 2014) using HMMer 3.1b2 (Potter
et al., 2018) with default parameters. To identify gene orthologs and clusters of orthologous
group (COG) annotations, the proteins were mapped to eggNOG orthology database
(version 4.5.1) (Huerta-Cepas et al., 2015) using emapper-1.0.3 (Huerta-Cepas et al.,
2017). To add gene-product annotations, the proteins were searched against UniProt
database (version 2019_04) (Consortium, 2018) using Diamond (v0.8.22.84) (Buchfink et



al., 2015) with the options “--evalue 1e-05 --max-target-segs 1”, the UniProt and EggNog
search results were combined to get the gene and product names using Gene2Product
v1.32 (https://github.com/nextgenusfs/gene2product). Possible proteolytic enzymes were
annotated by searching the proteins against the MEROPS database (version 12.0)
(Rawlings et al., 2017) using Diamond with the options “--evalue 1e-05 --max-target-seqs
1”. The proteins were also searched against the embryophyta single copy ortholog models
from BUSCO Datasets (embryophyta_odb9, update date: 2017-02-13) (Simao et al., 2015)
using HMMer with default options.

Comparative genomics

To identify synteny blocks, we first compared proteins from one genome to those from
another using BLASTP with an E-value cutoff of 1e-10 and a maximum number of
alignments of 5. The significant hits were then analyzed by MCScanX (Wang et al., 2012)
with parameters “-k 50 -g -1 -s 5 -e 1e-10 -m 25 -w 5” to obtain synteny blocks. The whole
genome alignments between two genomes in ZEAMAP were performed using minimap2
(version 2.17-r941) (Li, 2018) , with parameters "-c -x asm5 -B5 -04,16 --no-long-join -r 85
-N 50 -s 65 -z 200 --mask-level 0.9 --min-occ 200 -g 2500 --score-N 2", and the raw
alignment results were filtered to get the best alignment for each contig with QUAST-LG
(Mikheenko et al., 2018).

Annotating of genetic variations

The SNPs and InDels were annotated using the Ensembl variant effect predictor (VEP)
(McLaren et al., 2016) according to B73 gene annotation v4.43. The polymorphic SVs
between B73 and SK, as well as their genotypes in the AMP, were retrieved from (Yang et
al., 2019), and annotated according to B73 gene annotation v4.43 using SURVIVOR v1.0.6
(Jeffares et al., 2017). Haplotype blocks and tag SNPs were identified using Haploview
(Barrett et al., 2004).

Mapping and filtering of genetic loci

To perform genome-wide association studies for the collected phenotypic traits, the SNPs
were then further filtered to keep only records with a minor allele frequency (MAF) of at
least 5%. A mixed linear model accounting for the population structure (Q) and familial
relationship (K) was used to examine the association between the SNPs and each trait
using Tassel3 (Bradbury et al., 2007). The P value of each SNP was calculated, and
significance was defined with Bonferroni corrected P value cutoff of 1/N, where N is the
total number of markers used. To prevent the interactive GWAS viewers and the tabular
loci browser from operating too slowly, the volume of GWAS results was reduced by filtering
out SNPs which had very low significance values (P value > 1e-4). The pairwise LD r?
values of the remaining SNPs for each trait within 500 Kb windows were calculated using
PopLDdecay (Zhang et al., 2018).

We kept cis-eQTLs alone by retaining only the SNPs within 1 Mb of each gene
(Lonsdale et al., 2013). High quality cis-eQTL SNPs were selected by only retaining those



with a P value smaller than the Bonferroni corrected P value cutoff of 1/N. The pairwise LD
r2 values of the remaining SNPs for each gene were calculated using PopLDdecay (Zhang
et al., 2018).

Interactive visualization tools

The visualization tools for GWAS results were developed using LocusZoom.js
(https://qgithub.com/statgen/locuszoom), a JavaScript embeddable plugin for interactively
visualizing statistical genetic data, and ECharts (https://www.echartsjs.com), an open-
sourced JavaScript visualization tool. The gene expression pattern viewer and the eQTL
visualizer were modified from GTEXx visualizations (https://github.com/broadinstitute/gtex-
viz) (Lonsdale et al., 2013). The principal component analyses (PCA) dot plot and the
ancestries stacked histogram were also developed using ECharts.

CRISPR/Cas9 single-guide RNA designing

CRISPR/Cas9 sgRNAs for each maize reference genome were designed using CRISPR-
Local (Sun et al., 2018) with default options. Results were converted into gff format with
in-house perl scripts to format them for JBrowse.
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