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SUMMARY

Metabolites are the intermediate and final products of metabolism, which play essential roles in 

plant growth, evolution and adaptation to changing climates. However, it is unclear how evolution 

contributes to metabolic variation in plants. Here, we investigated the metabolomics data from leaf 

and seed tissues in maize and rice. By a principal component analysis (PCA) based on leaf 

metabolites but not seed metabolites, it was able to be clearly separated for rice Indica and 

Japonica accessions, while two maize subgroups, temperate and tropical, showed more visible 

admixture. Rice and maize seed exhibited significant interspecific differences in metabolic 

variation, while within rice, leaf and seed displayed similar metabolic variations. Among 10 

metabolic categories, flavonoids had higher variation in maize than rice, indicating flavonoids are 

a key constituent of interspecific metabolic divergence. Interestingly, metabolic regulation was 

additionally found to be dramatically reshaped from positive to negative correlations, indicative of 

the differential evolutionary processes in maize and rice. Moreover, perhaps due to this divergence 

significantly more metabolic interactions were identified in rice than maize. Furthermore, in rice, 

the leaf was found to harbor much more intense metabolic interactions than the seed. Our result 

suggests that metabolomes are valuable for tracking evolutionary history, thereby complementing 

and extending genomic insights concerning which features are responsible for interspecific 

differentiation in maize and rice. 
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Introduction

Metabolites serves as the intermediate and ultimate products of biological processes, being 

critical in plant growth, evolution and adaptation to changing climate conditions 

(Carreno-Quintero et al., 2013). In addition, metabolites are indispensable for human nutrition, 

energy and medicines (De Luca et al., 2012; Saito & Matsuda, 2010; Keurentjes, 2009). The 

metabolome represents the entire set of metabolites from a cell, tissue, organ or organism at a 

particular developmental or physiological stage (Carreno-Quintero et al., 2013). As such 

metabolomics aims to identify and quantify metabolites in an organism for investigating their 

dynamics, compositions and interactions with internal and external environments (Orešič, 2009). 

Moreover, by contrast to analyses such as genomics, transcriptomics, and proteomics which are 

largely a function of the genetic blueprint of an organism metabolomics focuses on investigating 

downstream biological processes that are closer to the end-phenotype (Keurentjes, 2009). 

Therefore, metabolomics analysis could provide an alternative to understand the evolutionary and 

breeding processes in plants.

Recently, with fast advancements in metabolomics technologies, metabolomics analysis 

methods have become an important platform benefiting for functional genomics and systems 

biology (Raamsdonk et al., 2001; Saito & Matsuda, 2010), complementary to transcriptomic and 

proteomic analyses (Hollywood et al., 2006; Weckwerth & Morgenthal, 2005). With the 

development of high-throughput and low-cost genotyping methods, most association and linkage 

mapping studies have been used to dissect the genetic mechanisms of complex traits in plants. A 

recent study combining genome-wide association analysis with metabolomics proved this to be a 

powerful approach for dissecting the genetic and biochemical basis of plant metabolism. 

Integrated multi-level “omics” analysis is also an effective tool in identifying critical functional 

genes underlying metabolic pathways (Chen et al., 2014; Wen et al., 2014; Wen et al., 2015). 

Moreover, studies of the chemical structures and annotations of newly identified metabolites are 

capable of not only uncovering novel metabolic pathways but also of improving the understanding 

of previously identified metabolic pathways (Gong et al., 2013; Wen et al., 2014; Chen et al., A
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2014). Additionally, identifying the loci encoding known metabolites could facilitate gene 

annotation (Wen et al., 2014; Peng et al., 2016; May et al., 2008). Metabolites can also be used as 

biomarkers of for example 100-kernel weight, which would facilitate the cloning of QTL and the 

identification of the genetic architecture underlying such traits, thereby enhancing crop breeding 

(Wen et al., 2014; Chen et al., 2016).

Maize (Zea mays L.) and rice (Oryza sativa L.) are two important crops in the grass family. 

These crops are not only staple foods for humans and animals, but also serve as highly important 

genetic materials. Maize was domesticated from teosinte (Zea mays ssp. parviglumis) 

approximately 9,000 years ago in the mid- to lowland tropical growth environment of 

southwestern Mexico. Domestication of maize is thought to have occurred via a single event 

(Matsuoka et al., 2002; van Heerwaarden et al., 2011). The separation of maize into tropical and 

temperate lines apparently occurred approximately 3,400-6,700 years ago (Liu et al., 2015). 

Similarly, rice is thought to have been domesticated from wild rice (Oryza rufipogon) ~10,000 

years ago (Molina et al., 2011; Gross & Zhao, 2014), and Indica rice was cultivated in the Ganges 

in India ~4000 years ago (Fuller et al., 2010; Fuller, 2011). However, whether Indica and 

Japonica have single or multiple origins has been the subject of several recent genetic and 

archaeological analyses and remains a source of some debate (Fuller & Sato, 2008; Civan et al., 

2015; Huang & Han, 2015). The large number of plant metabolites, which is estimated to exceed 

200,000 in nature (Fiehn, 2001; Fiehn, 2002), show remarkable biological variability in terms of 

abundance (Morgenthal et al., 2006). Therefore, the analysis of metabolomes would be a new 

angle to investigate the origin of Indica and Japonica rice.

Metabolomic studies have been reported in many species including maize (Riedelsheimer et 

al., 2012; Riedelsheimer et al., 2013; Rao et al., 2014; Wen et al., 2014; Obata et al., 2015; Wen et 

al., 2015; Li et al., 2019; Zhou et al., 2019; Xu et al., 2019), rice (Matsuda et al., 2012; Gong et al., 

2013; Chen et al., 2014; Matsuda et al., 2015; Peng et al., 2016; Valette et al., 2019), tomato 

(Solanum lycopersicum) (Do et al., 2010; Toubiana et al., 2012; Sauvage et al., 2014; Alseekh et 

al., 2015; Toubiana et al., 2015; Li et al., 2019), Arabidopsis thaliana (Keurentjes et al., 2008; 

Lisec et al., 2008; Rowe et al., 2008; Chan et al., 2011; Joseph et al., 2013), loblolly pine (Eckert A
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et al., 2012), wheat (Triticum aestivum) (Graham et al., 2009; Warth et al., 2015) and soybean 

(Glycine maximum) (Lin et al., 2014). However, there have been very few reports concerning 

comparative metabolomics studies between maize and rice (Wang et al., 2014). As such how the 

metabolome was involved in the differential evolution of maize and rice remains elusive. 

Three metabolic datasets were obtained in several previous studies, including the data for 

mature seed in a maize association panel (Wen et al., 2014), and the metabolic data of leaf (Chen 

et al., 2014) and seed (Chen et al., 2016) of a rice association panel. In the present study, we 

intend to explore: (i) the metabolic basis underlying the differential evolution of maize and rice; 

(ii) the spatio-temporal- metabolomics between rice tissues and (iii) evolutionary changes in the 

interactive metabolomics networks of maize and rice. 

Results

Metabolome-based population differentiations in maize and rice

Three metabolomics datasets of maize and rice were used in the present study. In the maize 

dataset, a high-throughput liquid chromatography tandem mass spectrometry (LC-MS/MS) 

analysis had previously detected 748 and 735 metabolites in two environments, respectively (Wen 

et al., 2014). There were 694 metabolites commonly detected in both environments, and 54 and 41 

metabolites which were specifically detected within a single environment. In the rice dataset, both 

leaf and seed tissues were used in the liquid chromatography-electrospray ionization tandem mass 

spectrometry (LC-ESI-MS/MS) analysis, for which 840 and 837 metabolites, were detected 

respectively (Chen et al., 2014 and Chen et al., 2016). 

After filtering metabolic data to remove those with high missing value rate and low 

correlation between different environments (for details see Experimental Procedures), we obtained 

576, 645 and 587 distinct metabolites in maize seed, rice seed and rice leaf, respectively, and the 

best linear unbiased prediction (BLUP) values of each metabolite were used in the following 

analyses (Supplemental Table 1-3). The details of metabolic distribution within the populations 

are provided in Figure S1. Then, ten classes of metabolites were identified as described previously A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

(Chen et al., 2016). Most of the metabolites are unknown in both maize and rice (Figure S2), 

leaving 103, 252 and 238 metabolites which could be fully annotated in maize seed, rice seed and 

rice leaf, respectively. Among which, 35% (36), 45% (115), and 52% (125) are flavonoids in 

maize seed, rice seed, and rice leaf, respectively (Figure 1A).

Based on metabolic variation within population, we performed a principal component 

analysis (PCA) of the three datasets. We can see that, the rice subspecies, Indica and Japonica 

accessions, can apparently be separated by the top principal components when analyzing leaf 

metabolite data, but not seed metabolite data; however  tropical and temperate maize lines where 

not fully separable from one another (Figure 1B). In order to figure out which specific metabolic 

category contributes to the population differentiation in maize and rice, the PCA were 

re-performed using only data from the metabolites with known annotation. In rice seed, flavonoid 

related metabolites could clearly discriminate Indica and Japonica accessions. A similar pattern 

was observed in rice leaf, but more annotation categories (flavonoids, phenolamides, polyphenols 

and others) appeared to be responsible for the differentiation of Indica and Japonica rice in this 

instance (Figure 1B and Figure S3). That said, none of metabolite annotations seemed to have high 

discriminating power for tropical and temperate maize, with the results for individual compound 

classes that proved anything a little bit worse than that the result using all metabolites (Figure 1B). 

These observations suggest that the key metabolites, such as flavonoids and phenolamide, 

probably played vital roles in the domestications of maize and rice. However, considerable further 

research will be needed in order to verify if that is indeed the case. 

Dramatic metabolic differentiation between maize and rice

Rice and maize differentiated to form independent species tens of millions of years ago (Xu 

et al., 2008; Wang et al., 2011). Afterwards, the intraspecific evolutionary process includes the 

post-domestication adaptation from tropical to temperate climes in maize, and the subspecies 

differentiation between Indica and Japonica in rice. To investigate the metabolic changes that 

occurred in parallel to the differentiation between rice and maize, we focused on the metabolic 

data for rice and maize collected in seed tissue, the key organ in diverse crop domestications. A
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Within a species, a metabolite that exhibited significantly different mean levels between 

subpopulations (p<0.01) was regarded to be involved in its intraspecific evolution. It was found 

that rice subspecies differentiation was accompanied by changes in 43.5% of seed metabolites 

associated with amino acid derivatives exhibiting significantly different mean values between 

Indica and Japonica, significantly higher than the ability of the post-domestication adaptation that 

resulted in changes in the levels of only 14.3% of metabolites between temperate and tropical in 

maize (p=6.74×10-4). Intriguingly, about 33.3% of polyphenols-associated metabolites appeared to 

be changed between Indica and Japonica rice, significantly higher than maize that observing none 

between temperate and tropical maize (p<2.20×10-16). Overall, we found that on average 39.8% 

(0.0% to 71.4%) of metabolites were significantly altered in level between temperate and tropical 

maize, by contrast, 56.0% (33.3% to 83.3%) of metabolites between Indica and Japonica (Figure 

2A, Supplementary Table 4 and 5). The result suggest considerable evolutionary differences exist 

between rice and maize and furthermore that several key metabolites may be involved. 

The metabolic variation within populations was next estimated using the coefficient of 

variation (CV) of each metabolite in rice and maize population, respectively. Globally, rice 

metabolic variation ranged from 0.01 to 4.17, significantly higher than that found in maize (from 

0.04 to 3.85, p=0.011) (Figure S4, Supplementary Table 7 and 8). According to a compound class 

analysis, it was found that maize had significantly higher metabolic variation of flavonoids than 

rice (p= 1.67×10-6; Figure 2B). It is worth noting, however, that the metabolic variation of amino 

acid derivatives was also marginally higher in maize than rice (p=0.08) (Figure 2B). This is 

surprisingly in contrast to the trend that rice preserved a higher proportion of difference in the 

means of amino acid related metabolites between its subpopulations than maize (Figure 2A). That 

said, between subpopulations within species, the coefficient of variation for any metabolite 

seemed not be significantly different between temperate and tropical maize, and between Indica 

and Japonica rice (Figure S5). 

Spatio-temporal metabolic variation in rice

In order to understand how spatio-temporal factors could impact on metabolic variation, we A
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compared the metabolic data collected in seed and leaf tissue of a rice population. It was found 

that nearly all metabolite categories showed higher proportion of differential-metabolites between 

Indica and Japonica in rice leaf than seed, particularly for flavonoids (p=1.67×10-12), 

phenolamides (p=7.72×10-4), and polyphenols (p=4.66×10-5) (Figure 3A, Supplementary Table 5 

and 6). There was only one exception that, the vitamin category appeared to contain ~40% 

differential metabolites between Indica and Japonica in leaf, which was marginally lower than 

that (~50%) in seed. Moreover, on average 73.8% (from 40.0% to 90.4%) metabolites showed 

significant difference between Indica and Japonica in leaf, whilst 56.0% (from 33.3% to 83.3%) 

metabolites significant difference between Indica and Japonica in seed (Figure 3A, 

Supplementary Table 5 and 6). That said, the leaf tissue displayed metabolic variation of between 

0.02 and 3.58, which was similar to that of the seed (between 0.01 and 4.17; p=0.80) (Figure S4, 

Supplementary Table 8 and 9). The amino acid and nuclei acid derivatives appeared to be more 

diverse in seeds than that in leaves (Figure 3B). Furthermore, when assessed by metabolite 

category, there was no significant difference between Indica and Japonica leaves (Figure S5).

Two-dimensional metabolic variation in maize and rice

To investigate metabolic networks between maize and rice, we computed 

metabolite-metabolite correlations according to metabolic categories. We filtered out the minor 

correlations in order to alleviate the noise due to chance, using the 1000 permutation-based 

thresholds for different datasets (Supplementary Table 10). In maize seed tissue (|r|≥ 0.174, 

p≤1.92×10-3), there were 653 pairs of positive correlations and 68 negative correlations in the 

whole population, while 337 and 315 positive correlations, twelve and six negative correlations 

were detected in temperate (|r|≥ 0.307, p≤1.42×10-3) and tropical (|r|≥ 0.309, p≤3.28×10-4) lines, 

respectively. In rice seed tissue (|r|≥ 0.126, p≤4.47×10-3), we detected a total of 5,474 positive and 

741 negative correlations in the whole population, while 3,603 and 2,716 positive correlations, 

371 and 84 negative correlations were detected when the Indica (|r|≥ 0.176, p≤3.22×10-3) and 

Japonica (|r|≥ 0.255, P≤1.55×10-3) accessions, respectively, were assessed independently. In rice 

leaf tissue (|r|≥ 0.132, p≤2.15×10-3), a total of 9,504 positive and 2,123 negative correlations were A
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identified in all rice accessions, whilst 8,861 and 4,477 positive correlations, 389 and 37 negative 

correlations in Indica (|r|≥ 0.185, p≤1.51×10-3) and Japonica (|r|≥ 0.310, p≤8.97×10-5) accessions, 

respectively. Then, the metabolic networks for maize and rice were built based on the pairwise 

correlation relationship (Figure S6, Supplementary Table 11-13). Interestingly, upon different 

metabolic data, the topology of metabolic networks appeared to be dramatically reshaped response 

to different spatio-temporal developmental stages and evolutionary processes. 

It was found that rice metabolites displayed more intense interactions than maize, while 

within rice, the metabolites in leaf exhibited higher correlations than those in seed (Figure 4 and 

Figure S7). By comparing inter- and intra-category, it was found that the intra-category metabolic 

correlations were significantly higher than that inter-category ones in maize seed and rice leaf 

tissues (Figure S8). However, in the rice seed tissue, the difference between inter- and 

intra-category was largely reduced, especially for Japonica accessions, the intra-category only 

showed marginal higher metabolic correlations than the inter-category (p=0.02; Figure S8). 

Furthermore, it was found that the maize metabolome exhibited significant higher 

correlations than that of rice in multiple metabolic categories including amino acids, flavonoids, 

amino acid derivatives, lipids and nucleic acid derivatives (Figure 5A). Intriguingly, in rice, the 

leaf tissue appeared to be more extreme in that it consistently exhibited higher metabolic 

correlations than the seed tissue in all categories (Figure 5B). By comparing two subgroups within 

species, we found that the majority of metabolic categories did not display much difference with 

regard to the metabolic correlations between temperate and tropical maize lines, except for amino 

acids that the mean pairwise metabolic correlations appeared to be considerably decreased 

between tropical and temperate maize (p=7.70×10-3; Figure S9A). A striking phenomenon was 

observed in rice. In the seed tissue, the metabolic correlations from amino acid derivatives, 

flavonoids and lipids were found to be significantly lower in Indica than that in Japonica 

accessions (p<0.05; Figure S9B), however, the leaf tissue revealed a reverse metabolic pattern to 

the seed, in that the Indica accessions exhibited significantly stronger metabolic correlations in 

amino acids and flavonoids than the Japonica accessions (Figure S9C).
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Discussion

It is of great interest to understand how crop plants evolved to adapt environmental resilience upon 

domestication (Hu et al., 2014). Currently, the history of crop domestications had been well 

explored based on genomic variation, plant morphology and even growth habits (Xu et al., 2008, 

Liu et al., 2015, Purugganan et al., 2009, Meyer et al., 2012, Doebley et al., 2006,). Nevertheless, 

the knowledge regarding how metabolomics is involved in plant evolutionary process remains 

ambiguous. In the present study, we provided metabolomics clues to better interpret the diverse 

evolution between rice and maize.

Metabolic insights on evolution of maize and rice

Maize was domesticated from Zea mays ssp. parviglumis in the mid- to lowland tropical growth 

environment of southwestern Mexico based on a single domestication event (Matsuoka et al., 

2002; van Heerwaarden et al., 2011). In the current study, cluster analysis of maize based on 

metabolomics data separated the maize lines into two major subgroups, congruent to temperate 

and tropical origins. We did however still find a proportion of temperate lines were clustered close 

to the tropical groups, or vice versa (Figure S10A), which could be explained by their admixed 

origins or recent gene introgressions from tropical germplasms for improving the agronomic and 

resistance ability of the temperate inbred lines (Yang et al., 2011; Wu et al., 2016). This result 

suggests that metabolomics data are somewhat valuable to discriminate the majority of the tropical 

and temperate lines, but as yet not to the extent that be done with the rice subspecies. The relevant 

metabolites might be associated to plant morphology, yield, and resistance to biotic and abiotic 

stress, which would probably be the targets selected by breeders and ancient farmers alike. The 

QTL of some metabolic and agronomic traits were reported to be co-localized in maize, and the 

use of metabolites as the intermediate traits or biomarkers could provide new insights into the 

genetic improvement of crops (Wen et al., 2014).

Rice was domesticated from Oryza rufipogon approximately 10,000 year ago (Molina et al., 

2011; Gross & Zhao, 2014). However, many questions of rice domestication remain elusive, such 

as its geographic origin, direct wild progenitor, and whether the two subspecies of cultivated rice A
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arose from a single or multiple domestication event (Huang et al., 2012; Fuller & Sato, 2008; 

Civan et al., 2015; Huang & Han, 2015). Our cluster analysis revealed that metabolomics could be 

used to distinguish between rice accessions with different origins (Figure S10B). Moreover, the 

results of cluster analysis seemed to support the occurrence of a single domestication event, 

because the two major groups both contain Indica and Japonica subgroups, which implied the 

likelihood is very low that rice simultaneously separated into Indica and Japonica at multiple 

domestication events. Therefore, metabolomics analysis could provide alternative angles to, 

perhaps even more efficiently, explore the evolutionary history in crops. 

Key metabolites contribute to maize and rice domestications

In this study, many metabolites exhibited significantly different contents and variations between 

temperate and tropical maize, and between Japonica and Indica rice (Figure 2, 3, Figure S6 and 

Supplementary Table 1-3, 7-9), which implied their participations in the domestication processes. 

In maize, tropical lines showed significantly greater variation in most metabolic categories than 

temperate lines, indicating that the maize post-domestication adaptation from tropical to temperate 

climates may involve broad series of metabolic regulations (Matsuoka et al., 2002; van 

Heerwaarden et al., 2011). 

Flavonoids, a class of secondary metabolites containing a C6-C3-C6 carbon framework 

(Tohge et al., 2013), play vital roles in protecting the plant from harmful effects of UV irradiation 

in sexual reproduction, as well as serving as anti-pathogenic compounds (Zhao, 2015; Koes et al., 

1994; Casas et al., 2016). Phenolamides, widespread across many plant species, play roles in plant 

defense against biotic stress (microorganisms, bacteria, viruses, fungi, and insects), abiotic stress 

(dehydration, salt stress, and UV irradiation) and floral induction and development (Dong et al., 

2015). In the present study, we found many metabolites differed between subgroups within maize 

and rice (Supplementary Table 4-9), among which, the flavonoids were the most detected 

metabolites in all metabolic categories (Figure 1 and Figure S2). The flavonoid related metabolites 

showed very high proportion of metabolites in difference between subgroups in rice (45%) and 

maize (36%), which was congruent to previous reports (Chen et al., 2014; Chen et al., 2016). The 

PCA results revealed that the flavonoids and phenolamide-related metabolites had the high ability A
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to discriminate subgroups of maize or rice accessions (Figure 1B). Interestingly, the flavonoids 

were found to exhibit higher metabolic variation in seeds of the maize population than in those of 

the rice population (p=1.67 × 10-6, Figure 2B). These results suggest that flavonoids and 

phenolamides are key metabolites contributing to differential evolution in rice and maize. 

Metabolic networks are dynamically reshaped upon plant evolution

Many studies reported that the selection for genomic and transcriptomic regulations play 

fundamental roles in crop evolutions and breeding improvement (Hufford et al. 2012; Huang et al., 

2012; Molina et al., 2011), even more important than the selection on genes or coding regions in 

maize (Liu et al., 2015). We built metabolic regulatory networks based on pairwise correlations in 

maize and rice. In the intraspecific layer, the tropical maize exhibited more positive metabolic 

correlations than the temperate maize, while the Japonica rice appeared to have more positive 

correlations than the Indica rice (Figure 4 and Figure S7). This demonstrates that the adaptation 

could drive the broadscale rewiring of regulatory relationships between metabolites. Intriguingly, 

this occurred by consistent reshaping of positive intraspecific regulatory relationships to negative 

ones in both maize and rice. In the interspecific layer, maize appeared to exhibit strong positive 

correlations between intra-category metabolites. By contrast, negative correlations seemed to be 

widespread not only between intra- but also inter-category metabolites in rice seed tissue (Figure 4 

and Figure S7). The opposing direction of metabolic regulations in the two species needs further 

research but may be an indicator of the metabolic bases of interspecific evolution between rice and 

maize. Moreover, by comparing leaf to seed tissue in rice, we found that metabolic regulations 

were reshaped dramatically, recovering many positive correlations between intra-category 

metabolites in the rice leaf that were analogous to the patterns observed in the maize seed (Figure 

4 and Figure S7). These results illustrate a dynamic landscape of metabolic variation in the 

interspecific and intraspecific evolution of maize and rice, indicating the neglected role of 

regulatory networks during artificial crop selection (Studer et al., 2017). Nevertheless, we realize 

that the conclusions of this study need to be cross-validated using independent population-based 

metabolomics data; and further efforts should focus on elucidating the mechanism underlying 

metabolomics evolution in rice and maize using integrated multi-omics methods.A
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Experimental procedures 

Metabolic datasets

The metabolic data used in this study were obtained from a diverse maize association-mapping 

panel (Wen et al., 2014) and a rice association-mapping panel (Chen et al., 2014; Chen et al., 

2016). The maize data, including 789 distinct metabolite features that were detected and 

quantified, from mature maize kernels of an association panel consisting of 368 diverse inbred 

lines from temperate, tropical and mixed subgroups (Wen et al., 2014). The chemical structures of 

126 metabolites have been identified or annotated (Wen et al., 2014). In previous study, maize 

association panel was planted in three environments, the samples from two environments (Yunnan 

and Chongqing) were measured using the same equipment, and the third one (Hainan) used 

different equipment (Wen et al., 2014). To integrate multiple environmental metabolic data in a 

BLUP data, here we only used the data from Yunnan (N 24 25', E 102 30', referred to as E1) and 

Chongqing (E 106 50', N 29 25', referred to as E2) environments aiming to reduce systematic bias. 

Detailed information about field trials and LC-MS/MS-based metabolite profiling of mature 

kernels from the maize association panel was reported previously (Wen et al., 2014).

For rice, the data obtained from a diverse worldwide collection of 524 rice accessions, 

including both landraces and elite varieties, derived from four subgroups: Indica, Japonica, Aus, 

and intermediate rice (Chen et al., 2014). In brief, metabolic profiling analyses in rice were 

conducted at the five-leaf and mature grain stages, respectively, based on liquid chromatography–

electrospray ionization–MS/MS, revealed 840 and 837 distinct metabolites were detected and 

quantified in the leaf (Chen et al., 2014) and seed (Chen et al., 2016) tissues, respectively. The 

chemical structures of 276 and 309 metabolites had been identified or annotated in leaf and seed 

tissues, respectively (Chen et al., 2014; Chen et al., 2016). For leaf metabolomics, two biological 

sample sets of rice association panel were extracted for leaf tissue in two different places at 

Huazhong Agricultural University, China (Wuhan, N 18 25', E 109 51'). Detailed information 

about field trials and metabolite profiling is provided in (Chen et al., 2014). For seed 

metabolomics, four sets of samples (two years, 2012 and 2013; and two replications per year) of A
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mature seeds per accession (Wuhan, N 18 25', E 109 51', referred to as 2012R1, 2012R2, 2013R1 

and 2013R2) were extracted using an LC–electrospray ionization (ESI)-MS/MS system. Detailed 

information about field trials and metabolite profiling was provided previously (Chen et al., 2016).

Data analysis

Before analysis, metabolic data in maize and rice were filtered for quality control, using the 

criteria of <10% missing rate in population and significant correlation between multiple 

environments (p<0.05). In rice data, the combinations of year and repeat were treated as 

environments. For each retained metabolite, the best linear unbiased predictor (BLUP) value for 

each line across environments was used to reduce environmental noise, based on the mixed linear 

model implemented in the R package ‘lme4’ (www.r-project.org). Ultimately, in rice and maize 

data, the BLUP value for each line was used to be metabolic phenotype for following analyses.

The metabolites used in the present study was classified into annotation categories, following 

the criteria described previously (Chen et al., 2016). In brief, the amino acids category contains 

maize seed, rice seed and rice leaf amino acid. The amino acid derivatives category related amino 

acids from maize seed metabolome, amino acid derivatives from rice seed and leaf metabolomes. 

The lipids category is consisted of lysophosphatide, fatty acids and phosphorylcholine from maize 

seed metabolome, fatty acid from rice seed and leaf metabolomes. The class of nucleic acid 

derivatives contains the nucleoside and nucleotide from maize seed metabolome, nucleic acid 

derivative from rice leaf metabolome, and nucleic acid derivative and nucleic acid from rice seed 

metabolome. The category of flavonoids includes flavonoid, anthocyanin and phytoalexin from 

maize seed metabolome, anthocyanin and flavonoid from rice seed and leaf metabolomes. The 

phenolamides category is consisted of phenolamides from maize seed metabolome, phenolamine 

from rice leaf metabplome, phenolamine and polyamine from rice seed metabolome. The 

polyphenols class includes carboxylic acids and organic acid from maize seed metabolome, 

polyphenol from rice leaf and seed metabolomes. The category of vitamins includes vitamin from 

maize seed metabolome, vitamine from rice seed and leaf metabolomes and vitamine derivative 

from rice seed metabolome. The others category is consisted of alkaloid, polypeptide and A
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hormones from maize seed metabolome, others, terpene, carotene and alkaloid from rice leaf 

metabolome, others, phytohormone, alkaloid, terpenoid and saccharides from rice seed 

metabolome, and unknown category. 

In maize and rice metabolomics data, principal component analysis (PCA) and the 

hierarchical cluster analysis were performed using SIMCA-P version 13.0 software with autofit 

model and scores standard (Wu et al., 2010); To understand intraspecific pattern in maize and rice, 

the maize association mapping panel can be divided into tropical, temperate and mixed origins, 

respectively, referred as the post-domestication adaptation 

(http://www.maizego.org/Resources.html), whilst the rice panel can be majorly divided into Indica 

and Japonica origins, respectively, referred as the subspecies differentiation (Chen et al., 2014). 

The information of population structure in rice and maize populations were detailed in 

Supplementary Data 1-3. For each metabolite category, the mean of metabolite content between 

temperate and tropical maize, and between Indica and Japonica rice was compared using student’s 

t-test in excel 2013 (p<0.01). The proportion of significant metabolites for each category was 

estimated in rice kernel, rice leaf and maize kernel, respectively. The proportion of significant 

metabolites for a category was compared between rice kernel and maize kernel, the significance of 

different proportions indicated the metabolite category may be associated to distinct evolutions 

between rice and maize. The similar analysis was performed to compare the significant proportion 

for each metabolite category between rice leaf and seed tissues, reflecting the metabolic 

spatial-temporal difference. The proportion comparison was done by binomial test in the R 

function ‘binom.test’ (Dorai-Raj S. and Dorai-Raj M. S. 2009), for exemplifying between rice and 

maize kernel, by assuming the proportion in the rice kernel as the null proportion and then 

comparing it with the observed proportion in maize kernel. Moreover, the metabolic variation 

within population were measured by coefficient of variation (CV) to normalize all metabolites in 

different tissues and species. For each metabolite category, the difference of metabolite variation 

between tropical and temperate maize, between Indica and Japonica rice or between maize and 

rice, was tested based on student’s t-test using the excel 2013 (p<0.01). 
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To explore two-dimensional variation in maize and rice, the Pearson correlation of pairwise 

inter-metabolites and intra-metabolites were calculated in subpopulations using the R function 

‘cor.test’ (www.r-project.org). The heatmap showing metabolite relationships was draw using the 

R package ‘pheatmap’ (Kolde R. and Kolde M. R. 2015). The significant metabolite-metabolite 

correlations (p<0.001) were retained to construct metabolic network using the software Cytoscape 

version 3.2.0 (http://www.cytoscape.org/). To summarize the significant metabolic correlations, a 

1,000-permutation test was implemented to determine the threshold of correlation coefficient (r) 

and p value. To do so, we reshuffled the lines randomly and obtained a permutated metabolic data. 

We then calculated the Pearson correlation coefficient and p value between pairwise metabolites 

by choosing one metabolite in original metabolic data and another in the permutated data. In each 

round of permutation, to reduce the impact of outliers, we recorded the 1th percentile small p and 

1th percentile large absolute r values following the rules (Chen & Storey, 2006). This permutation 

process was repeated 1000 rounds, obtain a distribution of recorded absolute r and p values, 

respectively. The 99th percentile of absolute r distribution was defined to as the r threshold while 

the 1th percentile as the p threshold under the global 1% type-I error rate. Following this 

procedure, we obtained the threshold of r and p value for the maize and rice metabolism data, 

respectively. The permutation-based thresholds for all analyzed datasets were provided as 

Supplementary Table 10.
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Figure Legend

Figure 1 Metabolomics composition and utility for inferring population structure. (A) The 

distribution of known metabolites. The know metabolites were classified into ten annotation 

categories. (B) The principal component analysis of maize and rice populations. Different sets 

of metabolites were used to evaluate population structure, which can be referred to be the 

temperate, tropical and mixed subgroups in maize; and the Japonica, Indica, Aus and Intermediate 

subgroups in rice. 

Figure 2 Interspecific metabolomics between maize and rice. (A) The frequency of 

domestication-associated metabolites based on metabolic category. (B) The population 

variation of metabolites based on metabolic category. The metabolic data in seed tissue for 

maize and rice were used. The comparison for the domestication-associated metabolite between 

maize and rice was based on binomial test, while the comparison for population variation between 

maize and rice was based on the Student’s-t test. p<0.05 was used as the significance threshold. 

Figure 3 Spatial-temporal metabolomics between leaf and seed tissues in rice. (A) The 

frequency of domestication-related metabolites based on metabolic category. (B) The 

population variation of metabolites based on metabolic category. The metabolic data in leaf 

and seed tissues in rice were used. The comparison for the domestication-associated metabolite 

between leaf and seed was based on binomial test, while the comparison for population variation 

between leaf and seed was based on the Student’s-t test. p<0.05 was used as the significance 

threshold.

Figure 4 The 2-D metabolomics for maize and rice evolutions. The heatmaps exhibited the 

metabolite-metabolite correlations between maize and rice, between temperate and tropical maize, 

and between Japonica and Indica rice. 
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Figure 5 The intra-category metabolic correlations in maize and rice. (A) Maize seed and 

rice seed. (B) Rice seed and leaf. The comparison of Pearson correlation coefficients of 

intra-category metabolites between maize and rice seed, and between rice leaf and seed, was based 

on the Student’s-t test. p<0.05 was used as the significance threshold.
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Supporting Information

Figure S1. The distribution of normalized metabolic values. (A) Maize seed. (B) Rice seed. 

(C) Rice leaf.

Figure S2. The distribution of all metabolites from maize and rice. (A) Maize seed. (B) Rice 

seed. (C) Rice leaf.

Figure S3 The PCA of maize and rice populations based on different sets of metabolites. 

(A-B) Maize seed. (C-I) Rice seed. (J-M) Rice leaf.

Figure S4. The distribution of coefficient of variation per metabolite in maize seed, rice seed 

and rice leaf, respectively.

Figure S5 The population variation of metabolites between subgroups based on metabolite 

category. (A) Temperate and tropical in maize seed. (B) Japonica and Indica in rice seed. (C) 

Japonica and Indica in rice leaf. The comparison between subgroups in maize and rice was 

based on the Student’s-t test. p<0.05 was used as the significance threshold.

Figure S6 Regulatory networks based on metabolic correlations. (A) Maize seed. (B) Rice 

seed. (C) Rice leaf. Positive and negative correlations are represented by blue and green 

edges, respectively. Each color denotes a compound class as shown in the bottom left legend.

Figure S7 The distributions of intra-category metabolic correlations in maize and rice. The 

comparison between different metabolic data was based on Student’s-t test. p<0.05 was used 

as the significance threshold.

Figure S8 The distributions of inter- and intra-category metabolic correlations within 

subgroups in maize and rice. The comparison between different metabolic data was based on 

Student’s-t test. p<0.05 was used as the significance threshold.

Figure S9 The intra-category metabolic correlations for subgroups in maize and rice. (A) 

Maize seed. (B) Rice seed. (C) Rice leaf. The comparison of Pearson correlation coefficients 

of intra-category metabolites between subgroups was based on the Student’s-t test. p<0.05 

was used as the significance threshold.
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Figure S10 Cluster analysis of maize and rice metabolomes. (A) Cluster analyses of 307 

maize inbred lines with 576 metabolites. (B) Cluster analyses of 524 rice accessions with 645 

metabolites. The clades indicate the accessions, colored corresponding to the subgroups in 

maize and rice.

Supplementary Table 1. The best linear unbiased predictor value for each metabolic trait in 

maize seed.

Supplementary Table 2. The best linear unbiased predictor value for each metabolic trait in rice 

seed.

Supplementary Table 3. The best linear unbiased predictor value for each metabolic trait in rice 

leaf.

Supplementary Table 4. The summary of annotated metabolites in maize seed and the adaptation 

related metabolites between temperate and tropical.

Supplementary Table 5. The summary of annotated metabolites in rice seed and the subspecies 

differentiation related metabolites between Indica and Japonica.

Supplementary Table 6. The summary of annotated metabolites in rice leaf and the subspecies 

differentiation related metabolites between Indica and Japonica.

Supplementary Table 7. The information of annotated metabolites and population variation in 

maize seed.

Supplementary Table 8. The information of annotated metabolites and population variation in 

rice seed.

Supplementary Table 9. The information of annotated metabolites and population variation in 

rice leaf.

Supplementary Table 10. The permutation-based thresholds for all analyzed datasets.

Supplementary Table 11. The Pearson correlation coefficient and p value between pairwise 

metabolites in maize seed.

Supplementary Table 12. The Pearson correlation coefficient and p value between pairwise 

metabolites in rice seed.A
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Supplementary Table 13. The Pearson correlation coefficient and p value between pairwise 

metabolites rice leaf.
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